opt.py 12.5 KB
Newer Older
1
2
# coding=utf-8
# Adapted from https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/opt/modeling_opt.py
3
# Copyright 2023 The CacheFlow team.
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
17
"""1D OPT model compatible with HuggingFace weights."""
Woosuk Kwon's avatar
Woosuk Kwon committed
18
19
from typing import Dict, List, Optional, Tuple

Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
20
21
22
23
import torch
from torch import nn
from transformers import OPTConfig

24
25
26
27
28
29
from cacheflow.model_executor.input_metadata import InputMetadata
from cacheflow.model_executor.layers.attention import GPTCacheFlowAttention
from cacheflow.model_executor.layers.sampler import Sampler
from cacheflow.model_executor.weight_utils import (hf_model_weights_iterator,
                                                   load_tensor_parallel_weights)
from cacheflow.model_executor.parallel_utils.parallel_state import (
Zhuohan Li's avatar
Zhuohan Li committed
30
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
31
32
from cacheflow.model_executor.parallel_utils.tensor_parallel import (
    VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
33
from cacheflow.sequence import SequenceOutputs
Woosuk Kwon's avatar
Woosuk Kwon committed
34
35
36

KVCache = Tuple[torch.Tensor, torch.Tensor]

Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

class OPTLearnedPositionalEmbedding(nn.Embedding):

    def __init__(self, num_embeddings: int, embedding_dim: int):
        # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
        # and adjust num_embeddings appropriately. Other models don't have this hack
        self.offset = 2
        super().__init__(num_embeddings + self.offset, embedding_dim)

    def forward(self, positions: torch.LongTensor):
        return super().forward(positions + self.offset)


class OPTAttention(nn.Module):

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        bias: bool = True,
    ) -> None:
        super().__init__()
        self.embed_dim = embed_dim
Zhuohan Li's avatar
Zhuohan Li committed
60
61
62
63
64
        tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
        total_num_heads = num_heads
        assert num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = total_num_heads // tensor_model_parallel_world_size
        self.head_dim = embed_dim // total_num_heads
65
        self.scaling = self.head_dim ** -0.5
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
66

67
68
69
        self.qkv_proj = ColumnParallelLinear(embed_dim, 3 * embed_dim, bias=bias,
                                             gather_output=False,
                                             perform_initialization=False)
Zhuohan Li's avatar
Zhuohan Li committed
70
71
72
        self.out_proj = RowParallelLinear(embed_dim, embed_dim, bias=bias,
                                          input_is_parallel=True,
                                          perform_initialization=False)
73
        self.attn = GPTCacheFlowAttention(scale=self.scaling)
Woosuk Kwon's avatar
Woosuk Kwon committed
74
75
76
77
78
79
80
81

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
82
        qkv, _ = self.qkv_proj(hidden_states)
Woosuk Kwon's avatar
Woosuk Kwon committed
83
        q, k, v = qkv.chunk(chunks=3, dim=-1)
Woosuk Kwon's avatar
Woosuk Kwon committed
84
85
86
        key_cache, value_cache = kv_cache
        attn_output = self.attn(
            q, k, v, key_cache, value_cache, input_metadata, cache_event)
Zhuohan Li's avatar
Zhuohan Li committed
87
        output, _ = self.out_proj(attn_output)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
88
89
        return output

Woosuk Kwon's avatar
Woosuk Kwon committed
90

Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
91
92
93
94
class OPTDecoderLayer(nn.Module):

    def __init__(self, config: OPTConfig):
        super().__init__()
Zhuohan Li's avatar
Zhuohan Li committed
95
        self.config = config
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
96
97
98
99
100
101
102
103
104
105
106
107
        self.embed_dim = config.hidden_size
        self.self_attn = OPTAttention(
            embed_dim=self.embed_dim,
            num_heads=config.num_attention_heads,
            bias=config.enable_bias,
        )
        self.do_layer_norm_before = config.do_layer_norm_before
        assert config.activation_function == 'relu'
        self.activation_fn = nn.ReLU()

        self.self_attn_layer_norm = nn.LayerNorm(
            self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
Zhuohan Li's avatar
Zhuohan Li committed
108
109
110
111
112
113
114
115
116
117
        self.fc1 = ColumnParallelLinear(self.embed_dim, config.ffn_dim,
                                        bias=config.enable_bias,
                                        gather_output=False,
                                        perform_initialization=False)
        self.fc2 = RowParallelLinear(config.ffn_dim, self.embed_dim,
                                     bias=config.enable_bias,
                                     input_is_parallel=True,
                                     perform_initialization=False)
        self.final_layer_norm = nn.LayerNorm(
            self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
118

Woosuk Kwon's avatar
Woosuk Kwon committed
119
120
121
122
123
124
125
    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
126
127
128
129
130
        # Self Attention
        residual = hidden_states
        # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
        if self.do_layer_norm_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)
Woosuk Kwon's avatar
Woosuk Kwon committed
131
132
133
134
135
        hidden_states = self.self_attn(
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
136
137
138
139
140
141
142
143
144
145
        hidden_states = residual + hidden_states
        # 350m applies layer norm AFTER attention
        if not self.do_layer_norm_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)

        # Fully Connected
        residual = hidden_states
        # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
        if self.do_layer_norm_before:
            hidden_states = self.final_layer_norm(hidden_states)
Zhuohan Li's avatar
Zhuohan Li committed
146
        hidden_states, _ = self.fc1(hidden_states)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
147
        hidden_states = self.activation_fn(hidden_states)
Zhuohan Li's avatar
Zhuohan Li committed
148
        hidden_states, _ = self.fc2(hidden_states)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
149
150
151
152
153
154
155
        hidden_states = residual + hidden_states
        # 350m applies layer norm AFTER attention
        if not self.do_layer_norm_before:
            hidden_states = self.final_layer_norm(hidden_states)
        return hidden_states


Zhuohan Li's avatar
Zhuohan Li committed
156
class OPTDecoder(nn.Module):
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
157
158

    def __init__(self, config: OPTConfig):
Zhuohan Li's avatar
Zhuohan Li committed
159
160
        super().__init__()
        self.config = config
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
161
162
163
164
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.vocab_size = config.vocab_size

Zhuohan Li's avatar
Zhuohan Li committed
165
166
167
168
169
170
        self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
                                                   config.word_embed_proj_dim,
                                                   perform_initialization=False)
        # Positional embeddings are replicated (not sharded).
        self.embed_positions = OPTLearnedPositionalEmbedding(
            config.max_position_embeddings, config.hidden_size)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
171

Zhuohan Li's avatar
Zhuohan Li committed
172
        # Project out & in will be replicated if they exist.
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        if config.word_embed_proj_dim != config.hidden_size:
            self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
        else:
            self.project_out = None

        if config.word_embed_proj_dim != config.hidden_size:
            self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
        else:
            self.project_in = None

        # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
        # with checkpoints that have been fine-tuned before transformers v4.20.1
        # see https://github.com/facebookresearch/metaseq/pull/164
        if config.do_layer_norm_before and not config._remove_final_layer_norm:
            self.final_layer_norm = nn.LayerNorm(
                config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
            )
        else:
            self.final_layer_norm = None

        self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
199
200
201
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
202
203
204
205
206
207
208
    ) -> torch.Tensor:
        inputs_embeds = self.embed_tokens(input_ids)
        pos_embeds = self.embed_positions(positions)
        if self.project_in is not None:
            inputs_embeds = self.project_in(inputs_embeds)
        hidden_states = inputs_embeds + pos_embeds

Woosuk Kwon's avatar
Woosuk Kwon committed
209
210
211
212
213
214
215
216
        for i in range(len(self.layers)):
            if cache_events is None:
                cache_event = None
            else:
                cache_event = cache_events[i]
            layer = self.layers[i]
            hidden_states = layer(
                hidden_states, kv_caches[i], input_metadata, cache_event)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
217
218
219
220
221
222
223
224

        if self.final_layer_norm is not None:
            hidden_states = self.final_layer_norm(hidden_states)
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
        return hidden_states


Zhuohan Li's avatar
Zhuohan Li committed
225
class OPTModel(nn.Module):
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
226
227

    def __init__(self, config: OPTConfig):
Zhuohan Li's avatar
Zhuohan Li committed
228
        super().__init__()
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
229
230
231
232
233
234
        self.decoder = OPTDecoder(config)

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
235
236
237
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
238
    ) -> torch.Tensor:
Woosuk Kwon's avatar
Woosuk Kwon committed
239
240
        return self.decoder(
            input_ids, positions, kv_caches, input_metadata, cache_events)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
241
242


Zhuohan Li's avatar
Zhuohan Li committed
243
class OPTForCausalLM(nn.Module):
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
244
245

    def __init__(self, config):
Zhuohan Li's avatar
Zhuohan Li committed
246
247
        super().__init__()
        self.config = config
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
248
        self.model = OPTModel(config)
Zhuohan Li's avatar
Zhuohan Li committed
249
250
251
        # TODO(zhuohan): create a new weight after implementing pipeline
        #                parallelism
        self.lm_head_weight = self.model.decoder.embed_tokens.weight
Woosuk Kwon's avatar
Woosuk Kwon committed
252
        self.sampler = Sampler(config.vocab_size)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
253
254
255
256
257

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
258
259
260
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
261
    ) -> Dict[int, SequenceOutputs]:
Woosuk Kwon's avatar
Woosuk Kwon committed
262
263
        hidden_states = self.model(
            input_ids, positions, kv_caches, input_metadata, cache_events)
Woosuk Kwon's avatar
Woosuk Kwon committed
264
        next_tokens = self.sampler(
Zhuohan Li's avatar
Zhuohan Li committed
265
            self.lm_head_weight, hidden_states, input_metadata)
Woosuk Kwon's avatar
Woosuk Kwon committed
266
        return next_tokens
Zhuohan Li's avatar
Zhuohan Li committed
267

268
    _column_parallel_weights = ["embed_tokens.weight", "fc1.weight", "fc1.bias"]
Zhuohan Li's avatar
Zhuohan Li committed
269
270
    _row_parallel_weights = ["out_proj.weight", "fc2.weight"]

271
272
273
    def load_weights(self, model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     use_np_cache: bool = False):
Zhuohan Li's avatar
Zhuohan Li committed
274
275
        tensor_model_parallel_rank = get_tensor_model_parallel_rank()
        state_dict = self.state_dict()
276
277
278
279

        for name, loaded_weight in hf_model_weights_iterator(
            model_name_or_path, cache_dir, use_np_cache):
            if "lm_head.weight" in name:
Zhuohan Li's avatar
Zhuohan Li committed
280
                continue
281
282
283
284
285
286
287
288
289

            if name.startswith("decoder."):
                name = "model." + name

            is_attention_weight = False
            for stride_id, att_weight_name in enumerate(["q_proj", "k_proj", "v_proj"]):
                if att_weight_name not in name:
                    continue
                param = state_dict[name.replace(att_weight_name, "qkv_proj")]
290
                shard_size = param.shape[0] // 3
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
                loaded_weight = loaded_weight[
                    shard_size * tensor_model_parallel_rank
                    :shard_size * (tensor_model_parallel_rank + 1)]
                param_slice = param.data[shard_size * stride_id
                                         :shard_size * (stride_id + 1)]
                assert param_slice.shape == loaded_weight.shape
                param_slice.copy_(loaded_weight)
                is_attention_weight = True
                break
            if is_attention_weight:
                continue

            param = state_dict[name]
            load_tensor_parallel_weights(param, loaded_weight, name,
                                         self._column_parallel_weights,
306
307
                                         self._row_parallel_weights,
                                         tensor_model_parallel_rank)