"vscode:/vscode.git/clone" did not exist on "e12358dc91361925c4979e552251522e2774fc11"
opt.py 11.7 KB
Newer Older
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
1
"""1D OPT model compatible with HuggingFace weights."""
Woosuk Kwon's avatar
Woosuk Kwon committed
2
3
from typing import Dict, List, Optional, Tuple

Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
4
5
6
7
import torch
from torch import nn
from transformers import OPTConfig

8
9
10
11
12
13
from cacheflow.model_executor.input_metadata import InputMetadata
from cacheflow.model_executor.layers.attention import GPTCacheFlowAttention
from cacheflow.model_executor.layers.sampler import Sampler
from cacheflow.model_executor.weight_utils import (hf_model_weights_iterator,
                                                   load_tensor_parallel_weights)
from cacheflow.model_executor.parallel_utils.parallel_state import (
Zhuohan Li's avatar
Zhuohan Li committed
14
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
15
16
from cacheflow.model_executor.parallel_utils.tensor_parallel import (
    VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
17
from cacheflow.sequence import SequenceOutputs
Woosuk Kwon's avatar
Woosuk Kwon committed
18
19
20

KVCache = Tuple[torch.Tensor, torch.Tensor]

Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

class OPTLearnedPositionalEmbedding(nn.Embedding):

    def __init__(self, num_embeddings: int, embedding_dim: int):
        # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
        # and adjust num_embeddings appropriately. Other models don't have this hack
        self.offset = 2
        super().__init__(num_embeddings + self.offset, embedding_dim)

    def forward(self, positions: torch.LongTensor):
        return super().forward(positions + self.offset)


class OPTAttention(nn.Module):

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        bias: bool = True,
    ) -> None:
        super().__init__()
        self.embed_dim = embed_dim
Zhuohan Li's avatar
Zhuohan Li committed
44
45
46
47
48
        tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
        total_num_heads = num_heads
        assert num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = total_num_heads // tensor_model_parallel_world_size
        self.head_dim = embed_dim // total_num_heads
49
        self.scaling = self.head_dim ** -0.5
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
50

51
52
53
        self.qkv_proj = ColumnParallelLinear(embed_dim, 3 * embed_dim, bias=bias,
                                             gather_output=False,
                                             perform_initialization=False)
Zhuohan Li's avatar
Zhuohan Li committed
54
55
56
        self.out_proj = RowParallelLinear(embed_dim, embed_dim, bias=bias,
                                          input_is_parallel=True,
                                          perform_initialization=False)
57
        self.attn = GPTCacheFlowAttention(scale=self.scaling)
Woosuk Kwon's avatar
Woosuk Kwon committed
58
59
60
61
62
63
64
65

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
66
        qkv, _ = self.qkv_proj(hidden_states)
Woosuk Kwon's avatar
Woosuk Kwon committed
67
        q, k, v = qkv.chunk(chunks=3, dim=-1)
Woosuk Kwon's avatar
Woosuk Kwon committed
68
69
70
        key_cache, value_cache = kv_cache
        attn_output = self.attn(
            q, k, v, key_cache, value_cache, input_metadata, cache_event)
Zhuohan Li's avatar
Zhuohan Li committed
71
        output, _ = self.out_proj(attn_output)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
72
73
        return output

Woosuk Kwon's avatar
Woosuk Kwon committed
74

Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
75
76
77
78
class OPTDecoderLayer(nn.Module):

    def __init__(self, config: OPTConfig):
        super().__init__()
Zhuohan Li's avatar
Zhuohan Li committed
79
        self.config = config
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
80
81
82
83
84
85
86
87
88
89
90
91
        self.embed_dim = config.hidden_size
        self.self_attn = OPTAttention(
            embed_dim=self.embed_dim,
            num_heads=config.num_attention_heads,
            bias=config.enable_bias,
        )
        self.do_layer_norm_before = config.do_layer_norm_before
        assert config.activation_function == 'relu'
        self.activation_fn = nn.ReLU()

        self.self_attn_layer_norm = nn.LayerNorm(
            self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
Zhuohan Li's avatar
Zhuohan Li committed
92
93
94
95
96
97
98
99
100
101
        self.fc1 = ColumnParallelLinear(self.embed_dim, config.ffn_dim,
                                        bias=config.enable_bias,
                                        gather_output=False,
                                        perform_initialization=False)
        self.fc2 = RowParallelLinear(config.ffn_dim, self.embed_dim,
                                     bias=config.enable_bias,
                                     input_is_parallel=True,
                                     perform_initialization=False)
        self.final_layer_norm = nn.LayerNorm(
            self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
102

Woosuk Kwon's avatar
Woosuk Kwon committed
103
104
105
106
107
108
109
    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
110
111
112
113
114
        # Self Attention
        residual = hidden_states
        # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
        if self.do_layer_norm_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)
Woosuk Kwon's avatar
Woosuk Kwon committed
115
116
117
118
119
        hidden_states = self.self_attn(
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
120
121
122
123
124
125
126
127
128
129
        hidden_states = residual + hidden_states
        # 350m applies layer norm AFTER attention
        if not self.do_layer_norm_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)

        # Fully Connected
        residual = hidden_states
        # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
        if self.do_layer_norm_before:
            hidden_states = self.final_layer_norm(hidden_states)
Zhuohan Li's avatar
Zhuohan Li committed
130
        hidden_states, _ = self.fc1(hidden_states)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
131
        hidden_states = self.activation_fn(hidden_states)
Zhuohan Li's avatar
Zhuohan Li committed
132
        hidden_states, _ = self.fc2(hidden_states)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
133
134
135
136
137
138
139
        hidden_states = residual + hidden_states
        # 350m applies layer norm AFTER attention
        if not self.do_layer_norm_before:
            hidden_states = self.final_layer_norm(hidden_states)
        return hidden_states


Zhuohan Li's avatar
Zhuohan Li committed
140
class OPTDecoder(nn.Module):
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
141
142

    def __init__(self, config: OPTConfig):
Zhuohan Li's avatar
Zhuohan Li committed
143
144
        super().__init__()
        self.config = config
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
145
146
147
148
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.vocab_size = config.vocab_size

Zhuohan Li's avatar
Zhuohan Li committed
149
150
151
152
153
154
        self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
                                                   config.word_embed_proj_dim,
                                                   perform_initialization=False)
        # Positional embeddings are replicated (not sharded).
        self.embed_positions = OPTLearnedPositionalEmbedding(
            config.max_position_embeddings, config.hidden_size)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
155

Zhuohan Li's avatar
Zhuohan Li committed
156
        # Project out & in will be replicated if they exist.
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        if config.word_embed_proj_dim != config.hidden_size:
            self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
        else:
            self.project_out = None

        if config.word_embed_proj_dim != config.hidden_size:
            self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
        else:
            self.project_in = None

        # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
        # with checkpoints that have been fine-tuned before transformers v4.20.1
        # see https://github.com/facebookresearch/metaseq/pull/164
        if config.do_layer_norm_before and not config._remove_final_layer_norm:
            self.final_layer_norm = nn.LayerNorm(
                config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
            )
        else:
            self.final_layer_norm = None

        self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
183
184
185
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
186
187
188
189
190
191
192
    ) -> torch.Tensor:
        inputs_embeds = self.embed_tokens(input_ids)
        pos_embeds = self.embed_positions(positions)
        if self.project_in is not None:
            inputs_embeds = self.project_in(inputs_embeds)
        hidden_states = inputs_embeds + pos_embeds

Woosuk Kwon's avatar
Woosuk Kwon committed
193
194
195
196
197
198
199
200
        for i in range(len(self.layers)):
            if cache_events is None:
                cache_event = None
            else:
                cache_event = cache_events[i]
            layer = self.layers[i]
            hidden_states = layer(
                hidden_states, kv_caches[i], input_metadata, cache_event)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
201
202
203
204
205
206
207
208

        if self.final_layer_norm is not None:
            hidden_states = self.final_layer_norm(hidden_states)
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
        return hidden_states


Zhuohan Li's avatar
Zhuohan Li committed
209
class OPTModel(nn.Module):
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
210
211

    def __init__(self, config: OPTConfig):
Zhuohan Li's avatar
Zhuohan Li committed
212
        super().__init__()
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
213
214
215
216
217
218
        self.decoder = OPTDecoder(config)

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
219
220
221
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
222
    ) -> torch.Tensor:
Woosuk Kwon's avatar
Woosuk Kwon committed
223
224
        return self.decoder(
            input_ids, positions, kv_caches, input_metadata, cache_events)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
225
226


Zhuohan Li's avatar
Zhuohan Li committed
227
class OPTForCausalLM(nn.Module):
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
228
229

    def __init__(self, config):
Zhuohan Li's avatar
Zhuohan Li committed
230
231
        super().__init__()
        self.config = config
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
232
        self.model = OPTModel(config)
Zhuohan Li's avatar
Zhuohan Li committed
233
234
235
        # TODO(zhuohan): create a new weight after implementing pipeline
        #                parallelism
        self.lm_head_weight = self.model.decoder.embed_tokens.weight
Woosuk Kwon's avatar
Woosuk Kwon committed
236
        self.sampler = Sampler(config.vocab_size)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
237
238
239
240
241

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
242
243
244
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
245
    ) -> Dict[int, SequenceOutputs]:
Woosuk Kwon's avatar
Woosuk Kwon committed
246
247
        hidden_states = self.model(
            input_ids, positions, kv_caches, input_metadata, cache_events)
Woosuk Kwon's avatar
Woosuk Kwon committed
248
        next_tokens = self.sampler(
Zhuohan Li's avatar
Zhuohan Li committed
249
            self.lm_head_weight, hidden_states, input_metadata)
Woosuk Kwon's avatar
Woosuk Kwon committed
250
        return next_tokens
Zhuohan Li's avatar
Zhuohan Li committed
251

252
    _column_parallel_weights = ["embed_tokens.weight", "fc1.weight", "fc1.bias"]
Zhuohan Li's avatar
Zhuohan Li committed
253
254
    _row_parallel_weights = ["out_proj.weight", "fc2.weight"]

255
256
257
    def load_weights(self, model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     use_np_cache: bool = False):
Zhuohan Li's avatar
Zhuohan Li committed
258
259
        tensor_model_parallel_rank = get_tensor_model_parallel_rank()
        state_dict = self.state_dict()
260
261
262
263

        for name, loaded_weight in hf_model_weights_iterator(
            model_name_or_path, cache_dir, use_np_cache):
            if "lm_head.weight" in name:
Zhuohan Li's avatar
Zhuohan Li committed
264
                continue
265
266
267
268
269
270
271
272
273

            if name.startswith("decoder."):
                name = "model." + name

            is_attention_weight = False
            for stride_id, att_weight_name in enumerate(["q_proj", "k_proj", "v_proj"]):
                if att_weight_name not in name:
                    continue
                param = state_dict[name.replace(att_weight_name, "qkv_proj")]
274
                shard_size = param.shape[0] // 3
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
                loaded_weight = loaded_weight[
                    shard_size * tensor_model_parallel_rank
                    :shard_size * (tensor_model_parallel_rank + 1)]
                param_slice = param.data[shard_size * stride_id
                                         :shard_size * (stride_id + 1)]
                assert param_slice.shape == loaded_weight.shape
                param_slice.copy_(loaded_weight)
                is_attention_weight = True
                break
            if is_attention_weight:
                continue

            param = state_dict[name]
            load_tensor_parallel_weights(param, loaded_weight, name,
                                         self._column_parallel_weights,
290
291
                                         self._row_parallel_weights,
                                         tensor_model_parallel_rank)