setup.py 10.3 KB
Newer Older
1
2
3
import io
import os
import re
4
5
import subprocess
from typing import List, Set
6
import warnings
7

8
from packaging.version import parse, Version
Woosuk Kwon's avatar
Woosuk Kwon committed
9
import setuptools
Woosuk Kwon's avatar
Woosuk Kwon committed
10
import torch
11
12
13
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME

ROOT_DIR = os.path.dirname(__file__)
14

15
16
MAIN_CUDA_VERSION = "12.1"

17
# Supported NVIDIA GPU architectures.
18
SUPPORTED_ARCHS = {"7.0", "7.5", "8.0", "8.6", "8.9", "9.0"}
19

20
# Compiler flags.
21
CXX_FLAGS = ["-g", "-O2", "-std=c++17"]
22
# TODO(woosuk): Should we use -O3?
23
NVCC_FLAGS = ["-O2", "-std=c++17"]
Woosuk Kwon's avatar
Woosuk Kwon committed
24

25
26
27
ABI = 1 if torch._C._GLIBCXX_USE_CXX11_ABI else 0
CXX_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
NVCC_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
28

Cody Yu's avatar
Cody Yu committed
29
if CUDA_HOME is None:
Woosuk Kwon's avatar
Woosuk Kwon committed
30
    raise RuntimeError(
Woosuk Kwon's avatar
Woosuk Kwon committed
31
        "Cannot find CUDA_HOME. CUDA must be available to build the package.")
Woosuk Kwon's avatar
Woosuk Kwon committed
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46

def get_nvcc_cuda_version(cuda_dir: str) -> Version:
    """Get the CUDA version from nvcc.

    Adapted from https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py
    """
    nvcc_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
                                          universal_newlines=True)
    output = nvcc_output.split()
    release_idx = output.index("release") + 1
    nvcc_cuda_version = parse(output[release_idx].split(",")[0])
    return nvcc_cuda_version


47
48
49
50
51
52
53
def get_torch_arch_list() -> Set[str]:
    # TORCH_CUDA_ARCH_LIST can have one or more architectures,
    # e.g. "8.0" or "7.5,8.0,8.6+PTX". Here, the "8.6+PTX" option asks the
    # compiler to additionally include PTX code that can be runtime-compiled
    # and executed on the 8.6 or newer architectures. While the PTX code will
    # not give the best performance on the newer architectures, it provides
    # forward compatibility.
54
55
    env_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
    if env_arch_list is None:
56
57
58
        return set()

    # List are separated by ; or space.
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    torch_arch_list = set(env_arch_list.replace(" ", ";").split(";"))
    if not torch_arch_list:
        return set()

    # Filter out the invalid architectures and print a warning.
    valid_archs = SUPPORTED_ARCHS.union({s + "+PTX" for s in SUPPORTED_ARCHS})
    arch_list = torch_arch_list.intersection(valid_archs)
    # If none of the specified architectures are valid, raise an error.
    if not arch_list:
        raise RuntimeError(
            "None of the CUDA architectures in `TORCH_CUDA_ARCH_LIST` env "
            f"variable ({env_arch_list}) is supported. "
            f"Supported CUDA architectures are: {valid_archs}.")
    invalid_arch_list = torch_arch_list - valid_archs
    if invalid_arch_list:
        warnings.warn(
            f"Unsupported CUDA architectures ({invalid_arch_list}) are "
            "excluded from the `TORCH_CUDA_ARCH_LIST` env variable "
            f"({env_arch_list}). Supported CUDA architectures are: "
78
79
            f"{valid_archs}.",
            stacklevel=2)
80
    return arch_list
81
82
83
84
85
86
87
88
89
90
91
92
93
94


# First, check the TORCH_CUDA_ARCH_LIST environment variable.
compute_capabilities = get_torch_arch_list()
if not compute_capabilities:
    # If TORCH_CUDA_ARCH_LIST is not defined or empty, target all available
    # GPUs on the current machine.
    device_count = torch.cuda.device_count()
    for i in range(device_count):
        major, minor = torch.cuda.get_device_capability(i)
        if major < 7:
            raise RuntimeError(
                "GPUs with compute capability below 7.0 are not supported.")
        compute_capabilities.add(f"{major}.{minor}")
95
96

nvcc_cuda_version = get_nvcc_cuda_version(CUDA_HOME)
97
98
99
if not compute_capabilities:
    # If no GPU is specified nor available, add all supported architectures
    # based on the NVCC CUDA version.
100
    compute_capabilities = SUPPORTED_ARCHS.copy()
101
102
103
104
105
106
107
    if nvcc_cuda_version < Version("11.1"):
        compute_capabilities.remove("8.6")
    if nvcc_cuda_version < Version("11.8"):
        compute_capabilities.remove("8.9")
        compute_capabilities.remove("9.0")

# Validate the NVCC CUDA version.
108
109
if nvcc_cuda_version < Version("11.0"):
    raise RuntimeError("CUDA 11.0 or higher is required to build the package.")
110
111
112
113
if (nvcc_cuda_version < Version("11.1")
        and any(cc.startswith("8.6") for cc in compute_capabilities)):
    raise RuntimeError(
        "CUDA 11.1 or higher is required for compute capability 8.6.")
114
115
116
117
118
119
120
121
122
if nvcc_cuda_version < Version("11.8"):
    if any(cc.startswith("8.9") for cc in compute_capabilities):
        # CUDA 11.8 is required to generate the code targeting compute capability 8.9.
        # However, GPUs with compute capability 8.9 can also run the code generated by
        # the previous versions of CUDA 11 and targeting compute capability 8.0.
        # Therefore, if CUDA 11.8 is not available, we target compute capability 8.0
        # instead of 8.9.
        warnings.warn(
            "CUDA 11.8 or higher is required for compute capability 8.9. "
123
124
            "Targeting compute capability 8.0 instead.",
            stacklevel=2)
125
126
127
128
129
130
        compute_capabilities = set(cc for cc in compute_capabilities
                                   if not cc.startswith("8.9"))
        compute_capabilities.add("8.0+PTX")
    if any(cc.startswith("9.0") for cc in compute_capabilities):
        raise RuntimeError(
            "CUDA 11.8 or higher is required for compute capability 9.0.")
131
132
133

# Add target compute capabilities to NVCC flags.
for capability in compute_capabilities:
134
135
136
137
    num = capability[0] + capability[2]
    NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=sm_{num}"]
    if capability.endswith("+PTX"):
        NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=compute_{num}"]
138

Woosuk Kwon's avatar
Woosuk Kwon committed
139
140
141
142
143
# Use NVCC threads to parallelize the build.
if nvcc_cuda_version >= Version("11.2"):
    num_threads = min(os.cpu_count(), 8)
    NVCC_FLAGS += ["--threads", str(num_threads)]

Woosuk Kwon's avatar
Woosuk Kwon committed
144
145
146
ext_modules = []

# Cache operations.
147
cache_extension = CUDAExtension(
Woosuk Kwon's avatar
Woosuk Kwon committed
148
    name="vllm.cache_ops",
149
    sources=["csrc/cache.cpp", "csrc/cache_kernels.cu"],
Woosuk Kwon's avatar
Woosuk Kwon committed
150
151
152
153
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
Woosuk Kwon's avatar
Woosuk Kwon committed
154
155
156
)
ext_modules.append(cache_extension)

157
# Attention kernels.
158
attention_extension = CUDAExtension(
Woosuk Kwon's avatar
Woosuk Kwon committed
159
    name="vllm.attention_ops",
160
    sources=["csrc/attention.cpp", "csrc/attention/attention_kernels.cu"],
Woosuk Kwon's avatar
Woosuk Kwon committed
161
162
163
164
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
165
166
167
)
ext_modules.append(attention_extension)

Woosuk Kwon's avatar
Woosuk Kwon committed
168
# Positional encoding kernels.
169
positional_encoding_extension = CUDAExtension(
Woosuk Kwon's avatar
Woosuk Kwon committed
170
    name="vllm.pos_encoding_ops",
171
    sources=["csrc/pos_encoding.cpp", "csrc/pos_encoding_kernels.cu"],
Woosuk Kwon's avatar
Woosuk Kwon committed
172
173
174
175
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
176
177
178
)
ext_modules.append(positional_encoding_extension)

179
# Layer normalization kernels.
180
layernorm_extension = CUDAExtension(
Woosuk Kwon's avatar
Woosuk Kwon committed
181
    name="vllm.layernorm_ops",
182
    sources=["csrc/layernorm.cpp", "csrc/layernorm_kernels.cu"],
Woosuk Kwon's avatar
Woosuk Kwon committed
183
184
185
186
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
187
188
189
)
ext_modules.append(layernorm_extension)

Woosuk Kwon's avatar
Woosuk Kwon committed
190
# Activation kernels.
191
activation_extension = CUDAExtension(
Woosuk Kwon's avatar
Woosuk Kwon committed
192
    name="vllm.activation_ops",
193
    sources=["csrc/activation.cpp", "csrc/activation_kernels.cu"],
Woosuk Kwon's avatar
Woosuk Kwon committed
194
195
196
197
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
Woosuk Kwon's avatar
Woosuk Kwon committed
198
199
200
)
ext_modules.append(activation_extension)

201
202
203
204
205
206
# Quantization kernels.
quantization_extension = CUDAExtension(
    name="vllm.quantization_ops",
    sources=[
        "csrc/quantization.cpp",
        "csrc/quantization/awq/gemm_kernels.cu",
chooper1's avatar
chooper1 committed
207
        "csrc/quantization/squeezellm/quant_cuda_kernel.cu",
208
209
210
211
212
213
214
215
    ],
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
)
ext_modules.append(quantization_extension)

216
217
218
219
220
221
222
223
224
225
226
# Misc. CUDA utils.
cuda_utils_extension = CUDAExtension(
    name="vllm.cuda_utils",
    sources=["csrc/cuda_utils.cpp", "csrc/cuda_utils_kernels.cu"],
    extra_compile_args={
        "cxx": CXX_FLAGS,
        "nvcc": NVCC_FLAGS,
    },
)
ext_modules.append(cuda_utils_extension)

227

228
229
230
231
def get_path(*filepath) -> str:
    return os.path.join(ROOT_DIR, *filepath)


232
def find_version(filepath: str) -> str:
233
234
235
236
237
    """Extract version information from the given filepath.

    Adapted from https://github.com/ray-project/ray/blob/0b190ee1160eeca9796bc091e07eaebf4c85b511/python/setup.py
    """
    with open(filepath) as fp:
Woosuk Kwon's avatar
Woosuk Kwon committed
238
239
        version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]",
                                  fp.read(), re.M)
240
241
242
243
244
        if version_match:
            return version_match.group(1)
        raise RuntimeError("Unable to find version string.")


245
246
247
248
249
250
251
252
253
def get_vllm_version() -> str:
    version = find_version(get_path("vllm", "__init__.py"))
    cuda_version = str(nvcc_cuda_version)
    if cuda_version != MAIN_CUDA_VERSION:
        cuda_version_str = cuda_version.replace(".", "")[:3]
        version += f"+cu{cuda_version_str}"
    return version


254
def read_readme() -> str:
Stephen Krider's avatar
Stephen Krider committed
255
256
257
258
259
260
    """Read the README file if present."""
    p = get_path("README.md")
    if os.path.isfile(p):
        return io.open(get_path("README.md"), "r", encoding="utf-8").read()
    else:
        return ""
261
262


263
264
def get_requirements() -> List[str]:
    """Get Python package dependencies from requirements.txt."""
265
    with open(get_path("requirements.txt")) as f:
266
267
268
269
        requirements = f.read().strip().split("\n")
    return requirements


Woosuk Kwon's avatar
Woosuk Kwon committed
270
setuptools.setup(
Woosuk Kwon's avatar
Woosuk Kwon committed
271
    name="vllm",
272
    version=get_vllm_version(),
Woosuk Kwon's avatar
Woosuk Kwon committed
273
    author="vLLM Team",
274
    license="Apache 2.0",
Woosuk Kwon's avatar
Woosuk Kwon committed
275
276
    description=("A high-throughput and memory-efficient inference and "
                 "serving engine for LLMs"),
277
278
    long_description=read_readme(),
    long_description_content_type="text/markdown",
279
    url="https://github.com/vllm-project/vllm",
280
    project_urls={
281
282
        "Homepage": "https://github.com/vllm-project/vllm",
        "Documentation": "https://vllm.readthedocs.io/en/latest/",
283
284
285
286
287
    },
    classifiers=[
        "Programming Language :: Python :: 3.8",
        "Programming Language :: Python :: 3.9",
        "Programming Language :: Python :: 3.10",
Woosuk Kwon's avatar
Woosuk Kwon committed
288
        "Programming Language :: Python :: 3.11",
289
290
291
        "License :: OSI Approved :: Apache Software License",
        "Topic :: Scientific/Engineering :: Artificial Intelligence",
    ],
Woosuk Kwon's avatar
Woosuk Kwon committed
292
293
    packages=setuptools.find_packages(exclude=("benchmarks", "csrc", "docs",
                                               "examples", "tests")),
294
295
    python_requires=">=3.8",
    install_requires=get_requirements(),
Woosuk Kwon's avatar
Woosuk Kwon committed
296
    ext_modules=ext_modules,
297
    cmdclass={"build_ext": BuildExtension},
298
    package_data={"vllm": ["py.typed"]},
Woosuk Kwon's avatar
Woosuk Kwon committed
299
)