benchmark_paged_attention.py 6.35 KB
Newer Older
1
from typing import Optional
2
3
4
5
6
7
import argparse
import random
import time

import torch

8
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, create_kv_caches_with_random
9
from vllm._C import ops
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

NUM_BLOCKS = 1024
PARTITION_SIZE = 512


@torch.inference_mode()
def main(
    version: str,
    num_seqs: int,
    context_len: int,
    num_query_heads: int,
    num_kv_heads: int,
    head_size: int,
    use_alibi: bool,
    block_size: int,
    dtype: torch.dtype,
    seed: int,
    do_profile: bool,
28
    kv_cache_dtype: Optional[str] = None,
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
) -> None:
    random.seed(seed)
    torch.random.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    scale = float(1.0 / (head_size**0.5))
    query = torch.empty(num_seqs,
                        num_query_heads,
                        head_size,
                        dtype=dtype,
                        device="cuda")
    query.uniform_(-scale, scale)

    assert num_query_heads % num_kv_heads == 0
    alibi_slopes = None
    if use_alibi:
        alibi_slopes = torch.randn(num_query_heads,
                                   dtype=torch.float,
                                   device="cuda")

    context_lens = [context_len for _ in range(num_seqs)]
    max_context_len = max(context_lens)
    context_lens = torch.tensor(context_lens, dtype=torch.int, device="cuda")

    # Create the block tables.
    max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
    block_tables = []
    for _ in range(num_seqs):
        block_table = [
            random.randint(0, NUM_BLOCKS - 1)
            for _ in range(max_num_blocks_per_seq)
        ]
        block_tables.append(block_table)
    block_tables = torch.tensor(block_tables, dtype=torch.int, device="cuda")

    # Create the KV cache.
65
66
67
68
    key_caches, value_caches = create_kv_caches_with_random(
        NUM_BLOCKS, block_size, 1, num_kv_heads, head_size, kv_cache_dtype,
        dtype)
    key_cache, value_cache = key_caches[0], value_caches[0]
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

    # Prepare for the paged attention kernel.
    output = torch.empty_like(query)
    if version == "v2":
        num_partitions = ((max_context_len + PARTITION_SIZE - 1) //
                          PARTITION_SIZE)
        tmp_output = torch.empty(
            size=(num_seqs, num_query_heads, num_partitions, head_size),
            dtype=output.dtype,
            device=output.device,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_query_heads, num_partitions),
            dtype=torch.float32,
            device=output.device,
        )
        max_logits = torch.empty_like(exp_sums)

    def run_benchmark(num_iters: int, profile: bool = False) -> float:
        torch.cuda.synchronize()
        if profile:
            torch.cuda.cudart().cudaProfilerStart()
        start_time = time.perf_counter()

        for _ in range(num_iters):
            if version == "v1":
95
                ops.paged_attention_v1(
96
97
98
99
                    output,
                    query,
                    key_cache,
                    value_cache,
100
                    num_kv_heads,
101
102
103
104
105
106
                    scale,
                    block_tables,
                    context_lens,
                    block_size,
                    max_context_len,
                    alibi_slopes,
107
                    kv_cache_dtype,
108
109
                )
            elif version == "v2":
110
                ops.paged_attention_v2(
111
112
113
114
115
116
117
                    output,
                    exp_sums,
                    max_logits,
                    tmp_output,
                    query,
                    key_cache,
                    value_cache,
118
                    num_kv_heads,
119
120
121
122
123
124
                    scale,
                    block_tables,
                    context_lens,
                    block_size,
                    max_context_len,
                    alibi_slopes,
125
                    kv_cache_dtype,
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
                )
            else:
                raise ValueError(f"Invalid version: {version}")
        torch.cuda.synchronize()

        end_time = time.perf_counter()
        if profile:
            torch.cuda.cudart().cudaProfilerStart()
        return (end_time - start_time) / num_iters

    # Warmup.
    print("Warming up...")
    run_benchmark(num_iters=3, profile=False)

    # Benchmark.
    if do_profile:
        latency = run_benchmark(num_iters=1, profile=True)
    else:
        latency = run_benchmark(num_iters=100, profile=False)
    print(f"Kernel running time: {latency * 1000000:.3f} us")


if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description="Benchmark the paged attention kernel.")
    parser.add_argument("--version",
                        type=str,
                        choices=["v1", "v2"],
                        default="v2")
    parser.add_argument("--batch-size", type=int, default=8)
    parser.add_argument("--context-len", type=int, default=4096)
    parser.add_argument("--num-query-heads", type=int, default=64)
    parser.add_argument("--num-kv-heads", type=int, default=8)
    parser.add_argument("--head-size",
                        type=int,
                        choices=[64, 80, 96, 112, 128, 256],
                        default=128)
    parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
    parser.add_argument("--use-alibi", action="store_true")
    parser.add_argument("--dtype",
                        type=str,
                        choices=["half", "bfloat16", "float"],
                        default="half")
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--profile", action="store_true")
171
172
173
174
175
176
177
    parser.add_argument(
        "--kv-cache-dtype",
        type=str,
        choices=["auto", "fp8_e5m2"],
        default="auto",
        help=
        'Data type for kv cache storage. If "auto", will use model data type.')
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    args = parser.parse_args()
    print(args)

    if args.num_query_heads % args.num_kv_heads != 0:
        raise ValueError("num_query_heads must be divisible by num_kv_heads")
    main(
        version=args.version,
        num_seqs=args.batch_size,
        context_len=args.context_len,
        num_query_heads=args.num_query_heads,
        num_kv_heads=args.num_kv_heads,
        head_size=args.head_size,
        block_size=args.block_size,
        use_alibi=args.use_alibi,
192
        dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
193
194
        seed=args.seed,
        do_profile=args.profile,
195
        kv_cache_dtype=args.kv_cache_dtype,
196
    )