attention.py 9.48 KB
Newer Older
1
import random
2
from typing import List, Optional
3

Woosuk Kwon's avatar
Woosuk Kwon committed
4
from flash_attn.flash_attn_interface import _flash_attn_forward
5
6
7
8
import torch

from cacheflow import attention_ops

9
10
MAX_SEQ_LEN = 4096

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

def ref_masked_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: float,
    attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    query = query * scale
    attn = torch.einsum('qhd,khd->hqk', query, key)
    if attn_mask is not None:
        attn = attn + attn_mask
    attn = torch.softmax(attn, dim=-1)
    out = torch.einsum('hqk,khd->qhd', attn, value)
    return out


def ref_single_query_cached_kv_attention(
    output: torch.Tensor,
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    block_tables: torch.Tensor,
    context_lens: torch.Tensor,
) -> None:
    num_heads = value_cache.shape[1]
    head_size = value_cache.shape[2]
    block_size = value_cache.shape[3]

    num_input_tokens = query.shape[0]
    for i in range(num_input_tokens):
        q = query[i].unsqueeze(0)
        block_table = block_tables[i]
        context_len = int(context_lens[i])

        keys = []
        values = []
        for j in range(context_len):
            block_number = int(block_table[j // block_size])
            block_offset = j % block_size

            k = key_cache[block_number, :, :, block_offset, :]
            k = k.reshape(num_heads, head_size)
            keys.append(k)

            v = value_cache[block_number, :, :, block_offset]
            values.append(v)
        keys = torch.stack(keys, dim=0)
        values = torch.stack(values, dim=0)

        scale = 1.0 / (head_size ** 0.5)
        out = ref_masked_attention(q, keys, values, scale)
        out = out.view(num_heads, head_size)
        output[i].copy_(out, non_blocking=True)


67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
def ref_multi_query_kv_attention(
    cu_seq_lens: List[int],
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dtype: torch.dtype,
) -> torch.Tensor:
    head_size = query.shape[-1]
    scale = 1.0 / (head_size ** 0.5)

    num_seqs = len(cu_seq_lens) - 1
    ref_outputs = []
    for i in range(num_seqs):
        start_idx = cu_seq_lens[i]
        end_idx = cu_seq_lens[i + 1]
        seq_len = end_idx - start_idx

        # Create attention mask
        attn_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1) * -1e5
        attn_mask = attn_mask.to(dtype=dtype, device='cuda')

        ref_output = ref_masked_attention(
            query[start_idx:end_idx],
            key[start_idx:end_idx],
            value[start_idx:end_idx],
            scale,
            attn_mask=attn_mask,
        )
        ref_outputs.append(ref_output)
    ref_output = torch.cat(ref_outputs, dim=0)
    return ref_output


100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
def ref_multi_query_cached_kv_attention(
    cu_query_lens: List[int],
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    block_tables: torch.Tensor,
    context_lens: torch.Tensor,
    dtype: torch.dtype,
) -> torch.Tensor:
    num_heads = value_cache.shape[1]
    head_size = value_cache.shape[2]
    block_size = value_cache.shape[3]
    scale = 1.0 / (head_size ** 0.5)

    num_queries = len(cu_query_lens) - 1
    ref_outputs = []
    for i in range(num_queries):
        start_idx = cu_query_lens[i]
        end_idx = cu_query_lens[i + 1]
        query_len = end_idx - start_idx
        context_len = int(context_lens[i])
        block_table = block_tables[i]

        # Create attention mask
        attn_mask = torch.triu(
            torch.ones(query_len, context_len), diagonal=context_len - query_len + 1) * -1e5
        attn_mask = attn_mask.to(dtype=dtype, device='cuda')

        keys = []
        values = []
        for j in range(context_len):
            block_number = int(block_table[j // block_size])
            block_offset = j % block_size

            k = key_cache[block_number, :, :, block_offset, :]
            k = k.reshape(num_heads, head_size)
            keys.append(k)

            v = value_cache[block_number, :, :, block_offset]
            values.append(v)
        keys = torch.stack(keys, dim=0)
        values = torch.stack(values, dim=0)

        ref_output = ref_masked_attention(
            query[start_idx:end_idx],
            keys,
            values,
            scale,
            attn_mask=attn_mask,
        )
        ref_outputs.append(ref_output)
    ref_output = torch.cat(ref_outputs, dim=0)
    return ref_output


155
156
157
158
159
160
161
162
def test_single_query_cached_kv_attention(
    num_tokens: int,
    num_heads: int,
    head_size: int,
    block_size: int,
    num_blocks: int,
    dtype: torch.dtype,
) -> None:
Woosuk Kwon's avatar
Woosuk Kwon committed
163
164
165
    qkv = torch.randn(
        num_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
    query, _, _ = qkv.unbind(dim=1)
166
167
168
169
170
171
172
173
    x = 16 // torch.tensor([], dtype=dtype).element_size()
    key_block_shape = (num_heads, head_size // x, block_size, x)
    key_cache = torch.randn(
        size=(num_blocks, *key_block_shape), dtype=dtype, device='cuda')
    value_block_shape = (num_heads, head_size, block_size)
    value_cache = torch.randn(
        size=(num_blocks, *value_block_shape), dtype=dtype, device='cuda')

Woosuk Kwon's avatar
Woosuk Kwon committed
174
175
176
177
178
    # Adjust the range of the values to reduce precision errors.
    query = query / (head_size ** 0.5)
    key_cache = key_cache / (head_size ** 0.5)
    value_cache = value_cache / (head_size ** 0.5)

179
    context_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_tokens)] 
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    max_context_len = max(context_lens)
    context_lens = torch.tensor(context_lens, dtype=torch.int, device='cuda')

    max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
    block_tables = []
    for _ in range(num_tokens):
        block_table = [
            random.randint(0, num_blocks - 1)
            for _ in range(max_num_blocks_per_seq)
        ]
        block_tables.append(block_table)
    block_tables = torch.tensor(block_tables, dtype=torch.int, device='cuda')

    scale = float(1.0 / (head_size ** 0.5))
Woosuk Kwon's avatar
Woosuk Kwon committed
194
195
    output = torch.empty(
        num_tokens, num_heads, head_size, dtype=dtype, device='cuda')
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    attention_ops.single_query_cached_kv_attention(
        output,
        query,
        key_cache,
        value_cache,
        scale,
        block_tables,
        context_lens,
        block_size,
        max_context_len,
    )

    ref_output = torch.empty_like(query)
    ref_single_query_cached_kv_attention(
        ref_output,
        query,
        key_cache,
        value_cache,
        block_tables,
        context_lens,
    )
    # NOTE(woosuk): Due to the difference in the data types the two
    # implementations use for attention softmax logits and accumulation,
    # there is a small difference in the final outputs.
    # We should use a relaxed tolerance for the test.
    assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)


224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def test_multi_query_kv_attention(
    num_seqs: int,
    num_heads: int,
    head_size: int,
    dtype: torch.dtype,
) -> None:
    seq_lens = random.sample(range(1, MAX_SEQ_LEN), num_seqs)
    max_seq_len = max(seq_lens)
    num_tokens = sum(seq_lens)

    cu_seq_lens = [0]
    for seq_len in seq_lens:
        cu_seq_lens.append(cu_seq_lens[-1] + seq_len)
    cu_seq_lens = torch.tensor(cu_seq_lens, dtype=torch.int, device='cuda')

    scale = float(1.0 / (head_size ** 0.5))
Woosuk Kwon's avatar
Woosuk Kwon committed
240
241
242
243
244
245
246
    qkv = torch.randn(
        num_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
    # Adjust the range of the values to reduce precision errors.
    qkv = qkv / (head_size ** 0.5)

    query, key, value = qkv.unbind(dim=1)
    output = torch.empty(
247
        num_tokens, num_heads, head_size, dtype=dtype, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
248
249
250
251
252
253
254
255
256
257
258
    _flash_attn_forward(
        query,
        key,
        value,
        output,
        cu_seq_lens,
        cu_seq_lens,
        max_seq_len,
        max_seq_len,
        dropout_p=0.0,
        softmax_scale=scale,
259
        causal=True,
Woosuk Kwon's avatar
Woosuk Kwon committed
260
261
        return_softmax=False,
    )
262

263
264
265
266
267
268
269
270
    cu_seq_lens = cu_seq_lens.cpu().tolist()
    ref_output = ref_multi_query_kv_attention(
        cu_seq_lens,
        query,
        key,
        value,
        dtype,
    )
271
272
273
    assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)


274
@torch.inference_mode()
275
276
277
278
279
def test_attention(seed: int) -> None:
    # NOTE(woosuk): Even when the seed is fixed, there is a chance that
    # the test fails due to the precision issue. Re-run the test if it fails.
    torch.random.manual_seed(seed)
    torch.cuda.manual_seed(seed)
280
    for dtype in [torch.half, torch.float]:
Woosuk Kwon's avatar
Woosuk Kwon committed
281
        for block_size in [8, 16, 32]:
282
            for head_size in [32, 64, 80, 96, 128, 160, 192, 256]:
283
284
285
                print(f'Testing single_query_cached_kv_attention with '
                      f'dtype={dtype}, block_size={block_size}, '
                      f'head_size={head_size}')
286
287
288
289
290
291
292
293
294
                test_single_query_cached_kv_attention(
                    num_tokens=37,
                    num_heads=3,
                    head_size=head_size,
                    block_size=block_size,
                    num_blocks=1024,
                    dtype=dtype,
                )

295
296
297
298
    # NOTE(woosuk): FlashAttention does not support FP32.
    for dtype in [torch.half]:
        # NOTE(woosuk): FlashAttention does not support head_size > 128.
        for head_size in [64, 80, 96, 128]:
299
300
            print(f'Testing multi_query_kv_attention with dtype={dtype}, '
                  f'head_size={head_size}')
301
302
303
304
305
306
307
            test_multi_query_kv_attention(
                num_seqs=11,
                num_heads=3,
                head_size=head_size,
                dtype=dtype,
            )

308
309

if __name__ == '__main__':
310
    test_attention(seed=0)