attention.py 6.23 KB
Newer Older
1
2
3
import random
from typing import Optional

4
from flash_attn.flash_attention import FlashAttention
5
6
7
8
import torch

from cacheflow import attention_ops

9
10
MAX_SEQ_LEN = 4096

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

def ref_masked_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: float,
    attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    query = query * scale
    attn = torch.einsum('qhd,khd->hqk', query, key)
    if attn_mask is not None:
        attn = attn + attn_mask
    attn = torch.softmax(attn, dim=-1)
    out = torch.einsum('hqk,khd->qhd', attn, value)
    return out


def ref_single_query_cached_kv_attention(
    output: torch.Tensor,
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    block_tables: torch.Tensor,
    context_lens: torch.Tensor,
) -> None:
    num_heads = value_cache.shape[1]
    head_size = value_cache.shape[2]
    block_size = value_cache.shape[3]

    num_input_tokens = query.shape[0]
    for i in range(num_input_tokens):
        q = query[i].unsqueeze(0)
        block_table = block_tables[i]
        context_len = int(context_lens[i])

        keys = []
        values = []
        for j in range(context_len):
            block_number = int(block_table[j // block_size])
            block_offset = j % block_size

            k = key_cache[block_number, :, :, block_offset, :]
            k = k.reshape(num_heads, head_size)
            keys.append(k)

            v = value_cache[block_number, :, :, block_offset]
            values.append(v)
        keys = torch.stack(keys, dim=0)
        values = torch.stack(values, dim=0)

        scale = 1.0 / (head_size ** 0.5)
        out = ref_masked_attention(q, keys, values, scale)
        out = out.view(num_heads, head_size)
        output[i].copy_(out, non_blocking=True)


def test_single_query_cached_kv_attention(
    num_tokens: int,
    num_heads: int,
    head_size: int,
    block_size: int,
    num_blocks: int,
    dtype: torch.dtype,
) -> None:
    query = torch.randn(
        num_tokens, num_heads, head_size, dtype=dtype, device='cuda')
    x = 16 // torch.tensor([], dtype=dtype).element_size()
    key_block_shape = (num_heads, head_size // x, block_size, x)
    key_cache = torch.randn(
        size=(num_blocks, *key_block_shape), dtype=dtype, device='cuda')
    value_block_shape = (num_heads, head_size, block_size)
    value_cache = torch.randn(
        size=(num_blocks, *value_block_shape), dtype=dtype, device='cuda')

85
    context_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_tokens)] 
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    max_context_len = max(context_lens)
    context_lens = torch.tensor(context_lens, dtype=torch.int, device='cuda')

    max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
    block_tables = []
    for _ in range(num_tokens):
        block_table = [
            random.randint(0, num_blocks - 1)
            for _ in range(max_num_blocks_per_seq)
        ]
        block_tables.append(block_table)
    block_tables = torch.tensor(block_tables, dtype=torch.int, device='cuda')

    scale = float(1.0 / (head_size ** 0.5))
    output = torch.empty_like(query)
    attention_ops.single_query_cached_kv_attention(
        output,
        query,
        key_cache,
        value_cache,
        scale,
        block_tables,
        context_lens,
        block_size,
        max_context_len,
    )

    ref_output = torch.empty_like(query)
    ref_single_query_cached_kv_attention(
        ref_output,
        query,
        key_cache,
        value_cache,
        block_tables,
        context_lens,
    )
    # NOTE(woosuk): Due to the difference in the data types the two
    # implementations use for attention softmax logits and accumulation,
    # there is a small difference in the final outputs.
    # We should use a relaxed tolerance for the test.
    assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)


129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def test_multi_query_kv_attention(
    num_seqs: int,
    num_heads: int,
    head_size: int,
    dtype: torch.dtype,
) -> None:
    seq_lens = random.sample(range(1, MAX_SEQ_LEN), num_seqs)
    max_seq_len = max(seq_lens)
    num_tokens = sum(seq_lens)

    cu_seq_lens = [0]
    for seq_len in seq_lens:
        cu_seq_lens.append(cu_seq_lens[-1] + seq_len)
    cu_seq_lens = torch.tensor(cu_seq_lens, dtype=torch.int, device='cuda')

    scale = float(1.0 / (head_size ** 0.5))
    query = torch.randn(
        num_tokens, num_heads, head_size, dtype=dtype, device='cuda')
    key = torch.rand_like(query)
    value = torch.rand_like(query)

    qkv = torch.stack([query, key, value], dim=1)
    flash_attn = FlashAttention(softmax_scale=scale)
    output = flash_attn(
        qkv,
        cu_seqlens=cu_seq_lens,
        max_s=max_seq_len,
        causal=True,
    )[0]

    ref_outputs = []
    for i, seq_len in enumerate(seq_lens):
        attn_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1) * -1e5
        attn_mask = attn_mask.to(dtype=dtype, device='cuda')
        start_idx = cu_seq_lens[i]
        end_idx = cu_seq_lens[i + 1]
        ref_output = ref_masked_attention(
            query[start_idx:end_idx],
            key[start_idx:end_idx],
            value[start_idx:end_idx],
            scale,
            attn_mask=attn_mask,
        )
        ref_outputs.append(ref_output)
    ref_output = torch.cat(ref_outputs, dim=0)

    assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)


178
179
180
181
@torch.inference_mode()
def test_attention() -> None:
    for dtype in [torch.half, torch.float]:
        for block_size in [8, 16]:
182
            for head_size in [32, 64, 80, 96, 128, 160, 192, 256]:
183
184
185
186
187
188
189
190
191
                test_single_query_cached_kv_attention(
                    num_tokens=37,
                    num_heads=3,
                    head_size=head_size,
                    block_size=block_size,
                    num_blocks=1024,
                    dtype=dtype,
                )

192
193
194
195
196
197
198
199
200
201
202
    # NOTE(woosuk): FlashAttention does not support FP32.
    for dtype in [torch.half]:
        # NOTE(woosuk): FlashAttention does not support head_size > 128.
        for head_size in [64, 80, 96, 128]:
            test_multi_query_kv_attention(
                num_seqs=11,
                num_heads=3,
                head_size=head_size,
                dtype=dtype,
            )

203
204
205

if __name__ == '__main__':
    test_attention()