benchmark_throughput.py 7.23 KB
Newer Older
1
"""Benchmark offline inference throughput."""
2
3
4
5
6
7
import argparse
import json
import random
import time
from typing import List, Tuple

8
import torch
9
from transformers import AutoModelForCausalLM, PreTrainedTokenizerBase
10
11
from tqdm import tqdm

Woosuk Kwon's avatar
Woosuk Kwon committed
12
from vllm import LLM, SamplingParams
13
from vllm.transformers_utils.tokenizer import get_tokenizer
14
15
16
17
18
19


def sample_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
20
) -> List[Tuple[str, int, int]]:
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [
        data for data in dataset
        if len(data["conversations"]) >= 2
    ]
    # Only keep the first two turns of each conversation.
    dataset = [
        (data["conversations"][0]["value"], data["conversations"][1]["value"])
        for data in dataset
    ]

    # Tokenize the prompts and completions.
    prompts = [prompt for prompt, _ in dataset]
    prompt_token_ids = tokenizer(prompts).input_ids
    completions = [completion for _, completion in dataset]
    completion_token_ids = tokenizer(completions).input_ids
    tokenized_dataset = []
    for i in range(len(dataset)):
        output_len = len(completion_token_ids[i])
43
44
45
46
47
48
49
50
51
52
53
54
55
        tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))

    # Filter out too long sequences.
    filtered_dataset: List[Tuple[str, int, int]] = []
    for prompt, prompt_token_ids, output_len in tokenized_dataset:
        prompt_len = len(prompt_token_ids)
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            continue
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))
56
57

    # Sample the requests.
58
    sampled_requests = random.sample(filtered_dataset, num_requests)
59
60
61
    return sampled_requests


Woosuk Kwon's avatar
Woosuk Kwon committed
62
def run_vllm(
63
64
    requests: List[Tuple[str, int, int]],
    model: str,
65
    tokenizer: str,
66
67
68
69
70
    tensor_parallel_size: int,
    seed: int,
    n: int,
    use_beam_search: bool,
) -> float:
71
    llm = LLM(
72
        model=model,
73
        tokenizer=tokenizer,
74
75
        tensor_parallel_size=tensor_parallel_size,
        seed=seed,
76
77
    )

Zhuohan Li's avatar
Zhuohan Li committed
78
    # Add the requests to the engine.
79
    for prompt, _, output_len in requests:
80
        sampling_params = SamplingParams(
81
82
            n=n,
            temperature=0.0 if use_beam_search else 1.0,
83
            top_p=1.0,
84
            use_beam_search=use_beam_search,
85
86
87
88
89
            ignore_eos=True,
            max_tokens=output_len,
        )
        # FIXME(woosuk): Do not use internal method.
        llm._add_request(
90
            prompt=prompt,
91
            prompt_token_ids=None,
Woosuk Kwon's avatar
Woosuk Kwon committed
92
            sampling_params=sampling_params,
93
94
95
96
        )

    start = time.time()
    # FIXME(woosuk): Do use internal method.
Zhuohan Li's avatar
Zhuohan Li committed
97
    llm._run_engine(use_tqdm=True)
98
    end = time.time()
99
100
101
102
103
104
105
106
107
108
109
110
    return end - start


def run_hf(
    requests: List[Tuple[str, int, int]],
    model: str,
    tokenizer: PreTrainedTokenizerBase,
    n: int,
    use_beam_search: bool,
    max_batch_size: int,
) -> float:
    assert not use_beam_search
111
112
113
114
    llm = AutoModelForCausalLM.from_pretrained(model, torch_dtype=torch.float16)
    if llm.config.model_type == "llama":
        # To enable padding in the HF backend.
        tokenizer.pad_token = tokenizer.eos_token
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    llm = llm.cuda()

    pbar = tqdm(total=len(requests))
    start = time.time()
    batch: List[str] = []
    max_prompt_len = 0
    max_output_len = 0
    for i in range(len(requests)):
        prompt, prompt_len, output_len = requests[i]
        # Add the prompt to the batch.
        batch.append(prompt)
        max_prompt_len = max(max_prompt_len, prompt_len)
        max_output_len = max(max_output_len, output_len)
        if len(batch) < max_batch_size and i != len(requests) - 1:
            # Check if we can add more requests to the batch.
            _, next_prompt_len, next_output_len = requests[i + 1]
            if (max(max_prompt_len, next_prompt_len) + max(
                max_output_len, next_output_len)) <= 2048:
                # We can add more requests to the batch.
                continue

        # Generate the sequences.
        input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
        llm_outputs = llm.generate(
            input_ids=input_ids.cuda(),
            do_sample=not use_beam_search,
            num_return_sequences=n,
            temperature=1.0,
            top_p=1.0,
            use_cache=True,
            max_new_tokens=max_output_len,
        )
        # Include the decoding time.
        tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
        pbar.update(len(batch))

        # Clear the batch.
        batch = []
        max_prompt_len = 0
        max_output_len = 0
    end = time.time()
    return end - start


def main(args: argparse.Namespace):
    print(args)
    random.seed(args.seed)

    # Sample the requests.
164
    tokenizer = get_tokenizer(args.tokenizer)
165
166
    requests = sample_requests(args.dataset, args.num_prompts, tokenizer)

Woosuk Kwon's avatar
Woosuk Kwon committed
167
168
    if args.backend == "vllm":
        elapsed_time = run_vllm(
169
170
            requests, args.model, args.tokenizer, args.tensor_parallel_size,
            args.seed, args.n, args.use_beam_search)
171
172
173
174
175
176
    elif args.backend == "hf":
        assert args.tensor_parallel_size == 1
        elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
                              args.use_beam_search, args.hf_max_batch_size)
    else:
        raise ValueError(f"Unknown backend: {args.backend}")
177
    total_num_tokens = sum(
178
179
        prompt_len + output_len
        for _, prompt_len, output_len in requests
180
    )
Woosuk Kwon's avatar
Woosuk Kwon committed
181
182
    print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
          f"{total_num_tokens / elapsed_time:.2f} tokens/s")
183
184
185
186


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Benchmark the throughput.")
Woosuk Kwon's avatar
Woosuk Kwon committed
187
188
    parser.add_argument("--backend", type=str, choices=["vllm", "hf"],
                        default="vllm")
189
190
191
    parser.add_argument("--dataset", type=str, required=True,
                        help="Path to the dataset.")
    parser.add_argument("--model", type=str, default="facebook/opt-125m")
192
    parser.add_argument("--tokenizer", type=str, default=None)
193
194
195
196
197
198
199
    parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
    parser.add_argument("--n", type=int, default=1,
                        help="Number of generated sequences per prompt.")
    parser.add_argument("--use-beam-search", action="store_true")
    parser.add_argument("--num-prompts", type=int, default=1000,
                        help="Number of prompts to process.")
    parser.add_argument("--seed", type=int, default=0)
200
201
    parser.add_argument("--hf-max-batch-size", type=int, default=None,
                        help="Maximum batch size for HF backend.")
202
    args = parser.parse_args()
203

Woosuk Kwon's avatar
Woosuk Kwon committed
204
    if args.backend == "vllm":
205
206
207
208
209
        if args.hf_max_batch_size is not None:
            raise ValueError("HF max batch size is only for HF backend.")
    elif args.backend == "hf":
        if args.hf_max_batch_size is None:
            raise ValueError("HF max batch size is required for HF backend.")
210
211
    if args.tokenizer is None:
        args.tokenizer = args.model
212

213
    main(args)