benchmark_throughput.py 7.47 KB
Newer Older
1
"""Benchmark offline inference throughput."""
2
3
4
5
6
7
8
import argparse
import json
import random
import time
from typing import List, Tuple

from cacheflow import LLM, SamplingParams
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import torch
from transformers import (AutoConfig, AutoTokenizer, AutoModelForCausalLM,
                          PreTrainedTokenizerBase)
from tqdm import tqdm


def get_tokenizer(model_name: str) -> PreTrainedTokenizerBase:
    config = AutoConfig.from_pretrained(model_name)
    if config.model_type == "llama":
        # A workaround for potential protobuf errors.
        model_name = "hf-internal-testing/llama-tokenizer"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        # To enable padding in the HF backend.
        tokenizer.pad_token = tokenizer.eos_token
        return tokenizer
    return AutoTokenizer.from_pretrained(model_name)
25
26
27
28
29
30


def sample_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
31
) -> List[Tuple[str, int, int]]:
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [
        data for data in dataset
        if len(data["conversations"]) >= 2
    ]
    # Only keep the first two turns of each conversation.
    dataset = [
        (data["conversations"][0]["value"], data["conversations"][1]["value"])
        for data in dataset
    ]

    # Tokenize the prompts and completions.
    prompts = [prompt for prompt, _ in dataset]
    prompt_token_ids = tokenizer(prompts).input_ids
    completions = [completion for _, completion in dataset]
    completion_token_ids = tokenizer(completions).input_ids
    tokenized_dataset = []
    for i in range(len(dataset)):
        output_len = len(completion_token_ids[i])
54
55
56
57
58
59
60
61
62
63
64
65
66
        tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))

    # Filter out too long sequences.
    filtered_dataset: List[Tuple[str, int, int]] = []
    for prompt, prompt_token_ids, output_len in tokenized_dataset:
        prompt_len = len(prompt_token_ids)
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            continue
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))
67
68

    # Sample the requests.
69
    sampled_requests = random.sample(filtered_dataset, num_requests)
70
71
72
    return sampled_requests


73
74
75
76
77
78
79
80
def run_cacheflow(
    requests: List[Tuple[str, int, int]],
    model: str,
    tensor_parallel_size: int,
    seed: int,
    n: int,
    use_beam_search: bool,
) -> float:
81
    llm = LLM(
82
83
84
        model=model,
        tensor_parallel_size=tensor_parallel_size,
        seed=seed,
85
86
87
    )

    # Add the requests to the server.
88
    for prompt, _, output_len in requests:
89
        sampling_params = SamplingParams(
90
91
            n=n,
            temperature=0.0 if use_beam_search else 1.0,
92
            top_p=1.0,
93
            use_beam_search=use_beam_search,
94
95
96
97
98
            ignore_eos=True,
            max_tokens=output_len,
        )
        # FIXME(woosuk): Do not use internal method.
        llm._add_request(
99
            prompt=prompt,
100
            prompt_token_ids=None,
Woosuk Kwon's avatar
Woosuk Kwon committed
101
            sampling_params=sampling_params,
102
103
104
105
106
107
        )

    start = time.time()
    # FIXME(woosuk): Do use internal method.
    llm._run_server(use_tqdm=True)
    end = time.time()
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    return end - start


def run_hf(
    requests: List[Tuple[str, int, int]],
    model: str,
    tokenizer: PreTrainedTokenizerBase,
    n: int,
    use_beam_search: bool,
    max_batch_size: int,
) -> float:
    assert not use_beam_search
    tokenizer = get_tokenizer(model)
    llm = AutoModelForCausalLM.from_pretrained(
        model, torch_dtype=torch.float16)
    llm = llm.cuda()

    pbar = tqdm(total=len(requests))
    start = time.time()
    batch: List[str] = []
    max_prompt_len = 0
    max_output_len = 0
    for i in range(len(requests)):
        prompt, prompt_len, output_len = requests[i]
        # Add the prompt to the batch.
        batch.append(prompt)
        max_prompt_len = max(max_prompt_len, prompt_len)
        max_output_len = max(max_output_len, output_len)
        if len(batch) < max_batch_size and i != len(requests) - 1:
            # Check if we can add more requests to the batch.
            _, next_prompt_len, next_output_len = requests[i + 1]
            if (max(max_prompt_len, next_prompt_len) + max(
                max_output_len, next_output_len)) <= 2048:
                # We can add more requests to the batch.
                continue

        # Generate the sequences.
        input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
        llm_outputs = llm.generate(
            input_ids=input_ids.cuda(),
            do_sample=not use_beam_search,
            num_return_sequences=n,
            temperature=1.0,
            top_p=1.0,
            use_cache=True,
            max_new_tokens=max_output_len,
        )
        # Include the decoding time.
        tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
        pbar.update(len(batch))

        # Clear the batch.
        batch = []
        max_prompt_len = 0
        max_output_len = 0
    end = time.time()
    return end - start


def main(args: argparse.Namespace):
    print(args)
    random.seed(args.seed)

    # Sample the requests.
    tokenizer = get_tokenizer(args.model)
    requests = sample_requests(args.dataset, args.num_prompts, tokenizer)

    if args.backend == "cacheflow":
        elapsed_time = run_cacheflow(
            requests, args.model, args.tensor_parallel_size, args.seed, args.n,
            args.use_beam_search)
    elif args.backend == "hf":
        assert args.tensor_parallel_size == 1
        elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
                              args.use_beam_search, args.hf_max_batch_size)
    else:
        raise ValueError(f"Unknown backend: {args.backend}")
185
    total_num_tokens = sum(
186
187
        prompt_len + output_len
        for _, prompt_len, output_len in requests
188
    )
Woosuk Kwon's avatar
Woosuk Kwon committed
189
190
    print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
          f"{total_num_tokens / elapsed_time:.2f} tokens/s")
191
192
193
194


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Benchmark the throughput.")
195
196
    parser.add_argument("--backend", type=str, choices=["cacheflow", "hf"],
                        default="cacheflow")
197
198
199
200
201
202
203
204
205
206
    parser.add_argument("--dataset", type=str, required=True,
                        help="Path to the dataset.")
    parser.add_argument("--model", type=str, default="facebook/opt-125m")
    parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
    parser.add_argument("--n", type=int, default=1,
                        help="Number of generated sequences per prompt.")
    parser.add_argument("--use-beam-search", action="store_true")
    parser.add_argument("--num-prompts", type=int, default=1000,
                        help="Number of prompts to process.")
    parser.add_argument("--seed", type=int, default=0)
207
208
    parser.add_argument("--hf-max-batch-size", type=int, default=None,
                        help="Maximum batch size for HF backend.")
209
    args = parser.parse_args()
210
211
212
213
214
215
216
    if args.backend == "cacheflow":
        if args.hf_max_batch_size is not None:
            raise ValueError("HF max batch size is only for HF backend.")
    elif args.backend == "hf":
        if args.hf_max_batch_size is None:
            raise ValueError("HF max batch size is required for HF backend.")

217
    main(args)