benchmark_throughput.py 7.44 KB
Newer Older
1
"""Benchmark offline inference throughput."""
2
3
4
5
6
7
import argparse
import json
import random
import time
from typing import List, Tuple

8
9
10
11
12
import torch
from transformers import (AutoConfig, AutoTokenizer, AutoModelForCausalLM,
                          PreTrainedTokenizerBase)
from tqdm import tqdm

Woosuk Kwon's avatar
Woosuk Kwon committed
13
14
from vllm import LLM, SamplingParams

15
16
17
18
19
20
21
22
23
24
25

def get_tokenizer(model_name: str) -> PreTrainedTokenizerBase:
    config = AutoConfig.from_pretrained(model_name)
    if config.model_type == "llama":
        # A workaround for potential protobuf errors.
        model_name = "hf-internal-testing/llama-tokenizer"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        # To enable padding in the HF backend.
        tokenizer.pad_token = tokenizer.eos_token
        return tokenizer
    return AutoTokenizer.from_pretrained(model_name)
26
27
28
29
30
31


def sample_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
32
) -> List[Tuple[str, int, int]]:
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [
        data for data in dataset
        if len(data["conversations"]) >= 2
    ]
    # Only keep the first two turns of each conversation.
    dataset = [
        (data["conversations"][0]["value"], data["conversations"][1]["value"])
        for data in dataset
    ]

    # Tokenize the prompts and completions.
    prompts = [prompt for prompt, _ in dataset]
    prompt_token_ids = tokenizer(prompts).input_ids
    completions = [completion for _, completion in dataset]
    completion_token_ids = tokenizer(completions).input_ids
    tokenized_dataset = []
    for i in range(len(dataset)):
        output_len = len(completion_token_ids[i])
55
56
57
58
59
60
61
62
63
64
65
66
67
        tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))

    # Filter out too long sequences.
    filtered_dataset: List[Tuple[str, int, int]] = []
    for prompt, prompt_token_ids, output_len in tokenized_dataset:
        prompt_len = len(prompt_token_ids)
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            continue
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))
68
69

    # Sample the requests.
70
    sampled_requests = random.sample(filtered_dataset, num_requests)
71
72
73
    return sampled_requests


Woosuk Kwon's avatar
Woosuk Kwon committed
74
def run_vllm(
75
76
77
78
79
80
81
    requests: List[Tuple[str, int, int]],
    model: str,
    tensor_parallel_size: int,
    seed: int,
    n: int,
    use_beam_search: bool,
) -> float:
82
    llm = LLM(
83
84
85
        model=model,
        tensor_parallel_size=tensor_parallel_size,
        seed=seed,
86
87
    )

Zhuohan Li's avatar
Zhuohan Li committed
88
    # Add the requests to the engine.
89
    for prompt, _, output_len in requests:
90
        sampling_params = SamplingParams(
91
92
            n=n,
            temperature=0.0 if use_beam_search else 1.0,
93
            top_p=1.0,
94
            use_beam_search=use_beam_search,
95
96
97
98
99
            ignore_eos=True,
            max_tokens=output_len,
        )
        # FIXME(woosuk): Do not use internal method.
        llm._add_request(
100
            prompt=prompt,
101
            prompt_token_ids=None,
Woosuk Kwon's avatar
Woosuk Kwon committed
102
            sampling_params=sampling_params,
103
104
105
106
        )

    start = time.time()
    # FIXME(woosuk): Do use internal method.
Zhuohan Li's avatar
Zhuohan Li committed
107
    llm._run_engine(use_tqdm=True)
108
    end = time.time()
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    return end - start


def run_hf(
    requests: List[Tuple[str, int, int]],
    model: str,
    tokenizer: PreTrainedTokenizerBase,
    n: int,
    use_beam_search: bool,
    max_batch_size: int,
) -> float:
    assert not use_beam_search
    tokenizer = get_tokenizer(model)
    llm = AutoModelForCausalLM.from_pretrained(
        model, torch_dtype=torch.float16)
    llm = llm.cuda()

    pbar = tqdm(total=len(requests))
    start = time.time()
    batch: List[str] = []
    max_prompt_len = 0
    max_output_len = 0
    for i in range(len(requests)):
        prompt, prompt_len, output_len = requests[i]
        # Add the prompt to the batch.
        batch.append(prompt)
        max_prompt_len = max(max_prompt_len, prompt_len)
        max_output_len = max(max_output_len, output_len)
        if len(batch) < max_batch_size and i != len(requests) - 1:
            # Check if we can add more requests to the batch.
            _, next_prompt_len, next_output_len = requests[i + 1]
            if (max(max_prompt_len, next_prompt_len) + max(
                max_output_len, next_output_len)) <= 2048:
                # We can add more requests to the batch.
                continue

        # Generate the sequences.
        input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
        llm_outputs = llm.generate(
            input_ids=input_ids.cuda(),
            do_sample=not use_beam_search,
            num_return_sequences=n,
            temperature=1.0,
            top_p=1.0,
            use_cache=True,
            max_new_tokens=max_output_len,
        )
        # Include the decoding time.
        tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
        pbar.update(len(batch))

        # Clear the batch.
        batch = []
        max_prompt_len = 0
        max_output_len = 0
    end = time.time()
    return end - start


def main(args: argparse.Namespace):
    print(args)
    random.seed(args.seed)

    # Sample the requests.
    tokenizer = get_tokenizer(args.model)
    requests = sample_requests(args.dataset, args.num_prompts, tokenizer)

Woosuk Kwon's avatar
Woosuk Kwon committed
176
177
    if args.backend == "vllm":
        elapsed_time = run_vllm(
178
179
180
181
182
183
184
185
            requests, args.model, args.tensor_parallel_size, args.seed, args.n,
            args.use_beam_search)
    elif args.backend == "hf":
        assert args.tensor_parallel_size == 1
        elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
                              args.use_beam_search, args.hf_max_batch_size)
    else:
        raise ValueError(f"Unknown backend: {args.backend}")
186
    total_num_tokens = sum(
187
188
        prompt_len + output_len
        for _, prompt_len, output_len in requests
189
    )
Woosuk Kwon's avatar
Woosuk Kwon committed
190
191
    print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
          f"{total_num_tokens / elapsed_time:.2f} tokens/s")
192
193
194
195


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Benchmark the throughput.")
Woosuk Kwon's avatar
Woosuk Kwon committed
196
197
    parser.add_argument("--backend", type=str, choices=["vllm", "hf"],
                        default="vllm")
198
199
200
201
202
203
204
205
206
207
    parser.add_argument("--dataset", type=str, required=True,
                        help="Path to the dataset.")
    parser.add_argument("--model", type=str, default="facebook/opt-125m")
    parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
    parser.add_argument("--n", type=int, default=1,
                        help="Number of generated sequences per prompt.")
    parser.add_argument("--use-beam-search", action="store_true")
    parser.add_argument("--num-prompts", type=int, default=1000,
                        help="Number of prompts to process.")
    parser.add_argument("--seed", type=int, default=0)
208
209
    parser.add_argument("--hf-max-batch-size", type=int, default=None,
                        help="Maximum batch size for HF backend.")
210
    args = parser.parse_args()
Woosuk Kwon's avatar
Woosuk Kwon committed
211
    if args.backend == "vllm":
212
213
214
215
216
217
        if args.hf_max_batch_size is not None:
            raise ValueError("HF max batch size is only for HF backend.")
    elif args.backend == "hf":
        if args.hf_max_batch_size is None:
            raise ValueError("HF max batch size is required for HF backend.")

218
    main(args)