"mmdet3d/datasets/transforms/dbsampler.py" did not exist on "8a8da91bd8e4bca84557132ae67508c5d3b7385c"
YoloV7_infer_migraphx.py 5.47 KB
Newer Older
Your Name's avatar
Your Name committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import os
import argparse
import time
import migraphx

class YOLOv7:
    def __init__(self, path, obj_thres=0.5, conf_thres=0.25, iou_thres=0.5):
        self.objectThreshold = obj_thres
        self.confThreshold = conf_thres
        self.nmsThreshold = iou_thres
        
        # 获取模型检测的类别信息
liucong's avatar
liucong committed
16
        self.classNames = list(map(lambda x: x.strip(), open('../Resource/Models/coco.names', 'r').readlines()))
Your Name's avatar
Your Name committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

        # 解析推理模型
        self.model = migraphx.parse_onnx(path)
      
        # 获取模型的输入name
        self.inputName = self.model.get_parameter_names()[0]
        
        # 获取模型的输入尺寸
        inputShape = self.model.get_parameter_shapes()[self.inputName].lens()
        self.inputHeight = int(inputShape[2])
        self.inputWidth = int(inputShape[3])
        print("inputName:{0} \ninputShape:{1}".format(self.inputName,inputShape))
        
    def detect(self, image):
        # 输入图片预处理
        input_img = self.prepare_input(image)
      
        # 模型编译
        self.model.compile(t=migraphx.get_target("gpu"), device_id=0)  # device_id: 设置GPU设备,默认为0号设备
        print("Success to compile")
        # 执行推理
        print("Start to inference")
        start = time.time()
Your Name's avatar
Your Name committed
40
        result = self.model.run({self.model.get_parameter_names()[0]: input_img})
Your Name's avatar
Your Name committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        print('net forward time: {:.4f}'.format(time.time() - start))
        # 模型输出结果后处理
        boxes, scores, class_ids = self.process_output(result)

        return boxes, scores, class_ids

    def prepare_input(self, image):
        self.img_height, self.img_width = image.shape[:2]
        input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        input_img = cv2.resize(input_img, (self.inputWidth, self.inputHeight))
        input_img = input_img.transpose(2, 0, 1)
        input_img = np.expand_dims(input_img, 0)
        input_img = np.ascontiguousarray(input_img)
        input_img = input_img.astype(np.float32)
        input_img = input_img / 255
         
        return input_img

    def process_output(self, output):
        predictions = np.squeeze(output[0])

        # 筛选包含物体的anchor
        obj_conf = predictions[:, 4]
        predictions = predictions[obj_conf > self.objectThreshold]
        obj_conf = obj_conf[obj_conf > self.objectThreshold]

        # 筛选大于置信度阈值的anchor
        predictions[:, 5:] *= obj_conf[:, np.newaxis]
        scores = np.max(predictions[:, 5:], axis=1)
        valid_scores = scores > self.confThreshold
        predictions = predictions[valid_scores]
        scores = scores[valid_scores]

        # 获取最高置信度分数对应的类别ID
        class_ids = np.argmax(predictions[:, 5:], axis=1)

        # 获取每个物体对应的anchor
        boxes = self.extract_boxes(predictions)

        # 执行非极大值抑制消除冗余anchor
        indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), self.confThreshold, self.nmsThreshold).flatten()
        
        return boxes[indices], scores[indices], class_ids[indices]

    def extract_boxes(self, predictions):
        # 获取anchor的坐标信息
        boxes = predictions[:, :4]

        # 将anchor的坐标信息映射到输入image
        boxes = self.rescale_boxes(boxes)

        # 格式转换
        boxes_ = np.copy(boxes)
        boxes_[..., 0] = boxes[..., 0] - boxes[..., 2] * 0.5
        boxes_[..., 1] = boxes[..., 1] - boxes[..., 3] * 0.5
        return boxes_

    def rescale_boxes(self, boxes):

        # 对anchor尺寸进行变换
        input_shape = np.array([self.inputWidth, self.inputHeight, self.inputWidth, self.inputHeight])
        boxes = np.divide(boxes, input_shape, dtype=np.float32)
        boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])
        return boxes

    def draw_detections(self, image, boxes, scores, class_ids):
        for box, score, class_id in zip(boxes, scores, class_ids):
            cx, cy, w, h = box.astype(int)

            # 绘制检测物体框
            cv2.rectangle(image, (cx, cy), (cx + w, cy + h), (0, 255, 255), thickness=2)
            label = self.classNames[class_id]
Your Name's avatar
Your Name committed
113
            label = f'{label} {score:.2f}'
Your Name's avatar
Your Name committed
114
115
116
117
118
119
            labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
            cv2.putText(image, label, (cx, cy - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), thickness=2)
        return image

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
Your Name's avatar
Your Name committed
120
    parser.add_argument('--imgpath', type=str, default='../Resource/Images/bus.jpg', help="image path")
liucong's avatar
liucong committed
121
    parser.add_argument('--modelpath', type=str, default='../Resource/Models/yolov7-tiny.onnx',help="onnx filepath")
Your Name's avatar
Your Name committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    parser.add_argument('--objectThreshold', default=0.5, type=float, help='class confidence')
    parser.add_argument('--confThreshold', default=0.25, type=float, help='class confidence')
    parser.add_argument('--nmsThreshold', default=0.5, type=float, help='nms iou thresh')
    args = parser.parse_args()

    yolov7_detector = YOLOv7(args.modelpath, obj_thres=args.objectThreshold, conf_thres=args.confThreshold, iou_thres=args.nmsThreshold)
    srcimg = cv2.imread(args.imgpath, 1)

    boxes, scores, class_ids = yolov7_detector.detect(srcimg)

    dstimg = yolov7_detector.draw_detections(srcimg, boxes, scores, class_ids)
    
    # 保存检测结果
    cv2.imwrite("./Result.jpg", dstimg)
    print("Success to save result")