prepare_test_libs.py 3.18 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""Script to prepare test_addone.so"""
import tvm
import numpy as np
from tvm import te
from tvm import relay
import os
import onnx

img_data = np.random.rand(1, 3, 640, 640).astype("float32")/255
input_name = "images"
shape_dict = {input_name:img_data.shape}
input_shape = img_data.shape
print("input shape",img_data.shape)
model_path = "/yolov5s.onnx"
onnx_model = onnx.load(model_path)
np.random.seed(0)
dtype = "float32"


def prepare_test_libs(base_path):
    n = te.var("n")
    A = te.placeholder((n,), name="A")
    B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B")
    s = te.create_schedule(B.op)
    # Compile library as dynamic library
    fadd_dylib = tvm.build(s, [A, B], "llvm", name="addone")
    dylib_path = os.path.join(base_path, "test_addone_dll.so")
    fadd_dylib.export_library(dylib_path)

    # Compile library in system library mode
    fadd_syslib = tvm.build(s, [A, B], "llvm", name="addonesys")
    syslib_path = os.path.join(base_path, "test_addone_sys.o")
    fadd_syslib.save(syslib_path)


def prepare_graph_lib(base_path):
    #x = relay.var("x", shape=(2, 2), dtype="float32")
    #y = relay.var("y", shape=(2, 2), dtype="float32")
    #params = {"y": np.ones((2, 2), dtype="float32")}
    #mod = tvm.IRModule.from_expr(relay.Function([x, y], x + y))
    # build a module
    mod, params = relay.frontend.from_onnx(onnx_model, shape_dict, dtype=dtype)

    compiled_lib = relay.build(mod, tvm.target.Target("rocm -libs=miopen,rocblas"), params=params)
    # export it as a shared library
    # If you are running cross compilation, you can also consider export
    # to tar and invoke host compiler later.
    dylib_path = os.path.join(base_path, "yolov5s_miopen_rocblas.so")
    compiled_lib.export_library(dylib_path)
    
def model_test():
    from tvm.contrib import graph_executor
    ctx = tvm.rocm()
    #compile_lib = tvm.runtime.load_module("lib/vgg16_test_relay_add.so")
    compile_lib:tvm.runtime.Module = tvm.runtime.load_module("lib/vgg16_test_relay_add.so")
    module = graph_executor.GraphModule(compile_lib["default"](ctx))
    module.set_input(onnx_model.graph.input[0].name, img_data)
    module.run()
    output = module.get_output(0).asnumpy()
    print(output.shape)

if __name__ == "__main__":
    curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
    #prepare_test_libs(os.path.join(curr_path, "lib"))
    prepare_graph_lib(os.path.join(curr_path, "lib"))
    #model_test()