README.md 3.15 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
# YOLOV5S
zhangqha's avatar
zhangqha committed
2

zhangqha's avatar
zhangqha committed
3
## 论文
zhangqha's avatar
zhangqha committed
4

zhangqha's avatar
zhangqha committed
5
[Comprehensive Guide to Ultralytics YOLOv5 - Ultralytics YOLOv8 Docs](https://docs.ultralytics.com/yolov5/)
zhangqha's avatar
zhangqha committed
6

zhangqha's avatar
zhangqha committed
7
## 模型结构
zhangqha's avatar
zhangqha committed
8

zhangqha's avatar
zhangqha committed
9
YOLOv5 是一种目标检测算法,采用单阶段(one-stage)的方法,基于轻量级的卷积神经网络结构,通过引入不同尺度的特征融合和特征金字塔结构来实现高效准确的目标检测。其中YOLOV5s是是YOLOv5系列中的一个较小版本。
zhangqha's avatar
zhangqha committed
10

zhangqha's avatar
zhangqha committed
11
![Backbone](Backbone.png)
zhangqha's avatar
zhangqha committed
12

zhangqha's avatar
zhangqha committed
13
## 算法原理
zhangqha's avatar
zhangqha committed
14

zhangqha's avatar
zhangqha committed
15
YOLOv5 是一种基于单阶段目标检测算法,通过将图像划分为不同大小的网格,预测每个网格中的目标类别和边界框,利用特征金字塔结构和自适应的模型缩放来实现高效准确的实时目标检测。是YOLOv5系列中的一个较小版本
zhangqha's avatar
zhangqha committed
16

zhangqha's avatar
zhangqha committed
17
![Algorithm_principle](Algorithm_principle.png)
zhangqha's avatar
zhangqha committed
18

zhangqha's avatar
zhangqha committed
19
## 环境配置
zhangqha's avatar
zhangqha committed
20
21
22
23
24

提供[光源](https://www.sourcefind.cn/#/service-details)拉取的训练的docker镜像:

* 推理镜像:
```
zhangqha's avatar
zhangqha committed
25
  docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:tvm-0.11_fp32_cpp_dtk22.10_py38_centos-7.6-latest
zhangqha's avatar
zhangqha committed
26
27
28
```
* 激活镜像环境及运行测试
```
zhangqha's avatar
zhangqha committed
29
  cd /root/tvm-0.11-dev0/apps/howto_deploy.yolov5s
zhangqha's avatar
zhangqha committed
30
```
zhangqha's avatar
zhangqha committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62


## 数据集

COCO2017(在网络良好的情况下,如果没有下载数据集,程序会默认在线下载数据集)

[训练数据](http://images.cocodataset.org/zips/train2017.zip)

[验证数据](http://images.cocodataset.org/zips/val2017.zip)

[测试数据](http://images.cocodataset.org/zips/test2017.zip)

[标签数据](https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels.zip)

数据集的目录结构如下:

```
├── images 
│   ├── train2017
│   ├── val2017
│   ├── test2017
├── labels
│   ├── train2017
│   ├── val2017
├── annotations
│   ├── instances_val2017.json
├── LICENSE
├── README.txt 
├── test-dev2017.txt
├── train2017.txt
├── val2017.txt

zhangqha's avatar
zhangqha committed
63
```
zhangqha's avatar
zhangqha committed
64

zhangqha's avatar
zhangqha committed
65
## 单卡推理测试
zhangqha's avatar
zhangqha committed
66
67
68

CPP Deploy测试参考:
```
zhangqha's avatar
zhangqha committed
69
    prepare_test_libs.py
zhangqha's avatar
zhangqha committed
70
71
72
73
    bash run_example.sh
```
Python Deploy测试参考:
```
zhangqha's avatar
zhangqha committed
74
    bash run_python.sh
zhangqha's avatar
zhangqha committed
75
76
```

zhangqha's avatar
zhangqha committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
## 准确率数据
```
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.571
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.401
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.216
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.423
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.489
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.311
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.516
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.566
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.378
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.627
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.719
Results saved to runs/val/exp59
```
zhangqha's avatar
zhangqha committed
92
93
94

## 源码仓库及问题反馈

zhangqha's avatar
zhangqha committed
95
* https://developer.hpccube.com/codes/modelzoo/yolov5s_tvm
zhangqha's avatar
zhangqha committed
96
97
98

## 参考

zhangqha's avatar
zhangqha committed
99
* https://developer.hpccube.com/codes/modelzoo/yolov5s_tvm