README.md 2.51 KB
Newer Older
Your Name's avatar
Your Name committed
1
2
3
4
5
6
7
8
# YoloV5

## 模型介绍

YoloV5是一种单阶段目标检测算法,该算法在YOLOV4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。

## 模型结构

Your Name's avatar
Your Name committed
9
YoloV5模型的主要改进思路有以下几点:
Your Name's avatar
Your Name committed
10
11
12
13
14
15

- 输入端的Mosaic数据增强、自适应锚框计算、自适应图像缩放操作;
- 主干网络的Focus结构与CSP结构;
- Neck端的FPN+PAN结构;
- 输出端的损失函数GIOU_Loss以及预测框筛选的DIOU_nms。

Your Name's avatar
Your Name committed
16
17
18
## 构建安装

在光源可拉取推理的docker镜像,YoloV5工程推荐的镜像如下:
Your Name's avatar
Your Name committed
19

Your Name's avatar
Your Name committed
20
21
22
```python
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:ort1.14.0_migraphx3.0.0-dtk22.10.1
```
Your Name's avatar
Your Name committed
23

Your Name's avatar
Your Name committed
24
### 安装Opencv依赖
Your Name's avatar
Your Name committed
25

Your Name's avatar
Your Name committed
26
27
28
```python
cd <path_to_migraphx_samples>
sh ./3rdParty/InstallOpenCVDependences.sh
Your Name's avatar
Your Name committed
29
```
Your Name's avatar
Your Name committed
30
31
32
33
34
35
36
37
38
39
40

### 修改CMakeLists.txt

- 如果使用ubuntu系统,需要修改CMakeLists.txt中依赖库路径:
  将"${CMAKE_CURRENT_SOURCE_DIR}/depend/lib64/"修改为"${CMAKE_CURRENT_SOURCE_DIR}/depend/lib/"

- **MIGraphX2.3.0及以上版本需要c++17**


### 安装OpenCV并构建工程

Your Name's avatar
Your Name committed
41
```
Your Name's avatar
Your Name committed
42
43
44
45
rbuild build -d depend
```

### 设置环境变量
Your Name's avatar
Your Name committed
46

Your Name's avatar
Your Name committed
47
48
49
将依赖库依赖加入环境变量LD_LIBRARY_PATH,在~/.bashrc中添加如下语句:

**Centos**:
Your Name's avatar
Your Name committed
50
51

```
Your Name's avatar
Your Name committed
52
53
54
55
56
57
58
export LD_LIBRARY_PATH=<path_to_migraphx_samples>/depend/lib64/:$LD_LIBRARY_PATH
```

**Ubuntu**:

```
export LD_LIBRARY_PATH=<path_to_migraphx_samples>/depend/lib/:$LD_LIBRARY_PATH
Your Name's avatar
Your Name committed
59
60
```

Your Name's avatar
Your Name committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
然后执行:

```
source ~/.bashrc
```

## 推理

### C++版本推理

成功编译YoloV5工程后,在build目录下输入如下命令运行该示例:

```
./MIGraphX_Samples 0
```

程序运行结束会在build目录生成YoloV5检测结果图像。

<img src="./Resource/Images/Result.jpg" alt="Result" style="zoom:50%;" />

### python版本推理
Your Name's avatar
Your Name committed
82
83
84
85

YoloV5模型的推理示例程序是YoloV5_infer_migraphx.py,使用如下命令运行该推理示例:

```
Your Name's avatar
Your Name committed
86
87
88
89
90
91
92
# 进入python示例目录
cd ./Python

# 安装依赖
pip install -r requirements.txt

# 运行程序
Your Name's avatar
Your Name committed
93
94
95
96
97
98
99
100
101
102
python YoloV5_infer_migraphx.py \
	--imgpath 测试图像路径 \ 
	--modelpath onnx模型路径 \
	--objectThreshold 判断是否有物体阈值,默认0.5 \
	--confThreshold 置信度阈值,默认0.25 \
	--nmsThreshold nms阈值,默认0.5 \
```

程序运行结束会在当前目录生成YoloV5检测结果图像。

Your Name's avatar
Your Name committed
103
<img src="./Resource/Images/Result.jpg" alt="Result_2" style="zoom: 50%;" />
Your Name's avatar
Your Name committed
104
105
106
107
108
109
110
111

## 历史版本

​		https://developer.hpccube.com/codes/modelzoo/yolov5_migraphx

## 参考

​		https://github.com/ultralytics/yolov5