YoloV5_infer_migraphx.py 8.79 KB
Newer Older
Your Name's avatar
Your Name committed
1
2
3
4
5
6
7
8
9
10
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import os
import argparse
import time
import migraphx


class YOLOv5:
shizhm's avatar
shizhm committed
11
    def __init__(self, path, dynamic=False, obj_thres=0.5, conf_thres=0.25, iou_thres=0.5):
Your Name's avatar
Your Name committed
12
13
14
        self.objectThreshold = obj_thres
        self.confThreshold = conf_thres
        self.nmsThreshold = iou_thres
shizhm's avatar
shizhm committed
15
        self.isDynamic = dynamic
Your Name's avatar
Your Name committed
16
        # 获取模型检测的类别信息
liucong's avatar
liucong committed
17
        self.classNames = list(map(lambda x: x.strip(), open('../Resource/Models/coco.names', 'r').readlines()))
Your Name's avatar
Your Name committed
18
19

        # 解析推理模型
shizhm's avatar
shizhm committed
20
21
22
        if self.isDynamic:
            maxInput={"images":[1,3,800,800]}
            self.model = migraphx.parse_onnx(path, map_input_dims=maxInput)
liucong's avatar
liucong committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36

            # 获取模型输入/输出节点信息
            print("inputs:")
            inputs = self.model.get_inputs()
            for key,value in inputs.items():
                print("{}:{}".format(key,value))
            
            print("outputs:")
            outputs = self.model.get_outputs()
            for key,value in outputs.items():
                print("{}:{}".format(key,value))

            # 获取模型的输入name
            self.inputName = "images"
shizhm's avatar
shizhm committed
37
            
liucong's avatar
liucong committed
38
39
40
41
42
            # 获取模型的输入尺寸
            inputShape = inputShape=inputs[self.inputName].lens()
            self.inputHeight = int(inputShape[2])
            self.inputWidth = int(inputShape[3])
            print("inputName:{0} \ninputShape:{1}".format(self.inputName, inputShape))
shizhm's avatar
shizhm committed
43
44
        else:
            self.model = migraphx.parse_onnx(path) 
liucong's avatar
liucong committed
45
46
47
48
49
            # 获取模型输入/输出节点信息
            print("inputs:")
            inputs = self.model.get_inputs()
            for key,value in inputs.items():
                print("{}:{}".format(key,value))
shizhm's avatar
shizhm committed
50
            
liucong's avatar
liucong committed
51
52
53
54
55
56
57
58
59
60
61
62
63
            print("outputs:")
            outputs = self.model.get_outputs()
            for key,value in outputs.items():
                print("{}:{}".format(key,value))

            # 获取模型的输入name
            self.inputName = "images"

            # 获取模型的输入尺寸
            inputShape = inputShape=inputs[self.inputName].lens()
            self.inputHeight = int(inputShape[2])
            self.inputWidth = int(inputShape[3])
            print("inputName:{0} \ninputShape:{1}".format(self.inputName, inputShape))
64
65
66
67
        
        # 模型编译
        self.model.compile(t=migraphx.get_target("gpu"), device_id=0)  # device_id: 设置GPU设备,默认为0号设备
        print("Success to compile")
Your Name's avatar
Your Name committed
68

shizhm's avatar
shizhm committed
69
70
71
72
    def detect(self, image, input_shape=None):
        if(self.isDynamic):
            self.inputWidth = input_shape[3]
            self.inputHeight = input_shape[2]
Your Name's avatar
Your Name committed
73
74
75
76
77
        # 输入图片预处理
        input_img = self.prepare_input(image)

        # 执行推理
        start = time.time()
liucong's avatar
liucong committed
78
        result = self.model.run({self.inputName: input_img})
Your Name's avatar
Your Name committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        print('net forward time: {:.4f}'.format(time.time() - start))
        # 模型输出结果后处理
        boxes, scores, class_ids = self.process_output(result)

        return boxes, scores, class_ids

    def prepare_input(self, image):
        self.img_height, self.img_width = image.shape[:2]
        input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        input_img = cv2.resize(input_img, (self.inputWidth, self.inputHeight))
        input_img = input_img.transpose(2, 0, 1)
        input_img = np.expand_dims(input_img, 0)
        input_img = np.ascontiguousarray(input_img)
        input_img = input_img.astype(np.float32)
        input_img = input_img / 255

        return input_img

    def process_output(self, output):
        predictions = np.squeeze(output[0])

        # 筛选包含物体的anchor
        obj_conf = predictions[:, 4]
        predictions = predictions[obj_conf > self.objectThreshold]
        obj_conf = obj_conf[obj_conf > self.objectThreshold]

        # 筛选大于置信度阈值的anchor
        predictions[:, 5:] *= obj_conf[:, np.newaxis]
        scores = np.max(predictions[:, 5:], axis=1)
        valid_scores = scores > self.confThreshold
        predictions = predictions[valid_scores]
        scores = scores[valid_scores]

        # 获取最高置信度分数对应的类别ID
        class_ids = np.argmax(predictions[:, 5:], axis=1)

        # 获取每个物体对应的anchor
        boxes = self.extract_boxes(predictions)

        # 执行非极大值抑制消除冗余anchor
        indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), self.confThreshold, self.nmsThreshold).flatten()

        return boxes[indices], scores[indices], class_ids[indices]

    def extract_boxes(self, predictions):
        boxes = predictions[:, :4]
        boxes = self.rescale_boxes(boxes)
        boxes_ = np.copy(boxes)
        boxes_[..., 0] = boxes[..., 0] - boxes[..., 2] * 0.5
        boxes_[..., 1] = boxes[..., 1] - boxes[..., 3] * 0.5
        return boxes_

    def rescale_boxes(self, boxes):
        # 对anchor尺寸进行变换
        input_shape = np.array([self.inputWidth, self.inputHeight, self.inputWidth, self.inputHeight])
        boxes = np.divide(boxes, input_shape, dtype=np.float32)
        boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])
        return boxes

    def draw_detections(self, image, boxes, scores, class_ids):
        for box, score, class_id in zip(boxes, scores, class_ids):
            cx, cy, w, h = box.astype(int)

            # 绘制检测物体框
            cv2.rectangle(image, (cx, cy), (cx + w, cy + h), (0, 255, 255), thickness=2)
            label = self.classNames[class_id]
            label = f'{label} {score:.2f}'
            labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
            cv2.putText(image, label, (cx, cy - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), thickness=2)
        return image
149
150
151
152
153
154
155
156
157
    
def read_images(image_path):
    image_lists = []
    
    for image_name in os.listdir(image_path):
        image = cv2.imread(image_path +"/" + image_name, 1)
        image_lists.append(image)
        
    return image_lists
Your Name's avatar
Your Name committed
158

shizhm's avatar
shizhm committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def yolov5_Static(imgpath, modelpath, objectThreshold, confThreshold, nmsThreshold):
    yolov5_detector = YOLOv5(modelpath, False, obj_thres=objectThreshold, conf_thres=confThreshold,
                             iou_thres=nmsThreshold)
    srcimg = cv2.imread(imgpath, 1)

    boxes, scores, class_ids = yolov5_detector.detect(srcimg)

    dstimg = yolov5_detector.draw_detections(srcimg, boxes, scores, class_ids)

    # 保存检测结果
    cv2.imwrite("./Result.jpg", dstimg)
    print("Success to save result")


def yolov5_dynamic(imgpath, modelpath, objectThreshold, confThreshold, nmsThreshold):
174
175
176
177
178
179
    # 设置动态输入shape
    input_shapes = []
    input_shapes.append([1,3,416,416])
    input_shapes.append([1,3,608,608])
    
    # 读取测试图像
shizhm's avatar
shizhm committed
180
    image_lists = read_images(imgpath)
181
182
    
    # 推理
shizhm's avatar
shizhm committed
183
184
    yolov5_detector = YOLOv5(modelpath, True, obj_thres=objectThreshold, 
                                    conf_thres=confThreshold, iou_thres=nmsThreshold)
185
186
187
188
189
190
191
192
193
194
    for i, image in enumerate(image_lists):
        print("Start to inference image{}".format(i))
        boxes, scores, class_ids = yolov5_detector.detect(image, input_shapes[i])
        dstimg = yolov5_detector.draw_detections(image, boxes, scores, class_ids)
        
        # 保存检测结果
        result_name = "Result{}.jpg".format(i)
        cv2.imwrite(result_name, dstimg)
    
    print("Success to save results")
shizhm's avatar
shizhm committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    
    

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--imgPath', type=str, default='../Resource/Images/DynamicPics/image1.jpg', help="image path")
    parser.add_argument('--imgFolderPath', type=str, default='../Resource/Images/DynamicPics', help="image folder path")
    parser.add_argument('--staticModelPath', type=str, default='../Resource/Models/yolov5s.onnx', help="static onnx filepath")
    parser.add_argument('--dynamicModelPath', type=str, default='../Resource/Models/yolov5s_Nx3xNxN.onnx', help="static onnx filepath")
    parser.add_argument('--objectThreshold', default=0.5, type=float, help='class confidence')
    parser.add_argument('--confThreshold', default=0.25, type=float, help='class confidence')
    parser.add_argument('--nmsThreshold', default=0.5, type=float, help='nms iou thresh')
    parser.add_argument("--staticInfer",action="store_true",default=False,help="Performing static inference")
    parser.add_argument("--dynamicInfer",action="store_true",default=False,help="Performing static inference")
    args = parser.parse_args()
    
    # 静态推理
    if args.staticInfer:
        yolov5_Static(args.imgPath, args.staticModelPath, args.objectThreshold, args.confThreshold, args.nmsThreshold)
    # 动态推理
    if args.dynamicInfer:
        yolov5_dynamic(args.imgFolderPath, args.dynamicModelPath, args.objectThreshold, args.confThreshold, args.nmsThreshold)
217
218

    
Your Name's avatar
Your Name committed
219
220
221
222
223
224
225
226
227
228
229
230