README.md 2.34 KB
Newer Older
lijian6's avatar
Update  
lijian6 committed
1
# YoloV7
lijian6's avatar
lijian6 committed
2

lijian6's avatar
Update  
lijian6 committed
3
## 论文
lijian6's avatar
lijian6 committed
4

lijian6's avatar
Update  
lijian6 committed
5
6
7
8
9
10
11
12
13
14
15
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

- https://arxiv.org/pdf/2207.02696.pdf

## 模型结构

YOLOV7是2022年最新出现的一种YOLO系列目标检测模型,该模型的网络结构包括三个部分:input、backbone和head。

<img src="./Doc/YoloV7_model.png" alt="YOLOV7_02" style="zoom:67%;" />

## 算法原理
lijian6's avatar
lijian6 committed
16

lijian6's avatar
Update  
lijian6 committed
17
18
YOLOv7的作者提出了 Extended-ELAN (E-ELAN)结构。E-ELAN采用了ELAN类似的特征聚合和特征转移流程,仅在计算模块中采用了类似ShuffleNet的分组卷积、扩张模块和混洗模块,最终通过聚合模块融合特征。通过采
用这种方法可以获得更加多样的特征,同时提高参数的计算和利用效率。
lijian6's avatar
lijian6 committed
19

lijian6's avatar
Update  
lijian6 committed
20
<img src="./Doc/YoloV7_suanfa.png" alt="YOLOV7_suanfa" style="zoom:67%;" />
lijian6's avatar
lijian6 committed
21
22

## 环境配置
lijian6's avatar
Update  
lijian6 committed
23
### Docker(方法一)
lijian6's avatar
lijian6 committed
24

lijian6's avatar
Update  
lijian6 committed
25
拉取镜像:
lijian6's avatar
lijian6 committed
26

lijian6's avatar
Update  
lijian6 committed
27
```plaintext
lijian6's avatar
lijian6 committed
28
29
30
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:tvm0.10_ort1.14.0_migraphx3.0.0-dtk23.04
```

lijian6's avatar
Update  
lijian6 committed
31
32
33
34
35
36
37
创建并启动容器:

```plaintext
docker run --shm-size 16g --network=host --name=video_ort --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/video_ort:/home/video_ort -it <Your Image ID> /bin/bash
```

### Dockerfile(方法二)
lijian6's avatar
lijian6 committed
38

lijian6's avatar
Update  
lijian6 committed
39
40
41
42
43
44
45
46
47
48
49
50
51
```
cd ./docker
docker build --no-cache -t video_ort:test .

docker run --shm-size 16g --network=host --name=video_ort --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/video_ort:/home/video_ort -it <Your Image ID> /bin/bash
```

## 数据集
根据提供的视频文件,进行目标检测。

## 推理

### 编译工程
lijian6's avatar
lijian6 committed
52
```
lijian6's avatar
lijian6 committed
53
git clone https://developer.hpccube.com/codes/modelzoo/video_ort.git
lijian6's avatar
lijian6 committed
54
55
56
57
58
59
60
cd video_ort
mkdir build
cd build
cmake ../
make
```

lijian6's avatar
Update  
lijian6 committed
61
### 运行示例
lijian6's avatar
lijian6 committed
62
```
lijian6's avatar
Update  
lijian6 committed
63
64
65
66
./Video_Onnx
根据提示选择要运行的示例程序,运行解码卡示例需要提前安装并初始化解码卡。比如执行:

./Video_Onnx 0
lijian6's avatar
lijian6 committed
67
68
69
```
运行CPU解码并运行YOLOV3推理示例程序

lijian6's avatar
Update  
lijian6 committed
70
71
72
## result

![img](./Doc/image.gif)
lijian6's avatar
lijian6 committed
73

lijian6's avatar
Update  
lijian6 committed
74
75
### 精度

lijian6's avatar
lijian6 committed
76

lijian6's avatar
Update  
lijian6 committed
77
78
79
80
81
82
83
84
## 应用场景

### 算法类别

`目标检测`

### 热点应用行业

lijian6's avatar
Update  
lijian6 committed
85
`监控`,`交通`,`教育`
lijian6's avatar
lijian6 committed
86
87
88

## 源码仓库及问题反馈

lijian6's avatar
Update  
lijian6 committed
89
90
91
92
93
http://developer.hpccube.com/codes/modelzoo/video_ort.git

## 参考资料

https://github.com/WongKinYiu/yolov7
lijian6's avatar
lijian6 committed
94