trainer.py 9.32 KB
Newer Older
suily's avatar
suily committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import time
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader

import dist
from models import VAR, VQVAE, VectorQuantizer2
from utils.amp_sc import AmpOptimizer
from utils.misc import MetricLogger, TensorboardLogger

Ten = torch.Tensor
FTen = torch.Tensor
ITen = torch.LongTensor
BTen = torch.BoolTensor


class VARTrainer(object):
    def __init__(
        self, device, patch_nums: Tuple[int, ...], resos: Tuple[int, ...],
        vae_local: VQVAE, var_wo_ddp: VAR, var: DDP,
        var_opt: AmpOptimizer, label_smooth: float,
    ):
        super(VARTrainer, self).__init__()
        
        self.var, self.vae_local, self.quantize_local = var, vae_local, vae_local.quantize
        self.quantize_local: VectorQuantizer2
        self.var_wo_ddp: VAR = var_wo_ddp  # after torch.compile
        self.var_opt = var_opt
        
        del self.var_wo_ddp.rng
        self.var_wo_ddp.rng = torch.Generator(device=device)
        
        self.label_smooth = label_smooth
        self.train_loss = nn.CrossEntropyLoss(label_smoothing=label_smooth, reduction='none')
        self.val_loss = nn.CrossEntropyLoss(label_smoothing=0.0, reduction='mean')
        self.L = sum(pn * pn for pn in patch_nums)
        self.last_l = patch_nums[-1] * patch_nums[-1]
        self.loss_weight = torch.ones(1, self.L, device=device) / self.L
        
        self.patch_nums, self.resos = patch_nums, resos
        self.begin_ends = []
        cur = 0
        for i, pn in enumerate(patch_nums):
            self.begin_ends.append((cur, cur + pn * pn))
            cur += pn*pn
        
        self.prog_it = 0
        self.last_prog_si = -1
        self.first_prog = True
    
    @torch.no_grad()
    def eval_ep(self, ld_val: DataLoader):
        tot = 0
        L_mean, L_tail, acc_mean, acc_tail = 0, 0, 0, 0
        stt = time.time()
        training = self.var_wo_ddp.training
        self.var_wo_ddp.eval()
        for inp_B3HW, label_B in ld_val:
            B, V = label_B.shape[0], self.vae_local.vocab_size
            inp_B3HW = inp_B3HW.to(dist.get_device(), non_blocking=True)
            label_B = label_B.to(dist.get_device(), non_blocking=True)
            
            gt_idx_Bl: List[ITen] = self.vae_local.img_to_idxBl(inp_B3HW)
            gt_BL = torch.cat(gt_idx_Bl, dim=1)
            x_BLCv_wo_first_l: Ten = self.quantize_local.idxBl_to_var_input(gt_idx_Bl)
            
            self.var_wo_ddp.forward
            logits_BLV = self.var_wo_ddp(label_B, x_BLCv_wo_first_l)
            L_mean += self.val_loss(logits_BLV.data.view(-1, V), gt_BL.view(-1)) * B
            L_tail += self.val_loss(logits_BLV.data[:, -self.last_l:].reshape(-1, V), gt_BL[:, -self.last_l:].reshape(-1)) * B
            acc_mean += (logits_BLV.data.argmax(dim=-1) == gt_BL).sum() * (100/gt_BL.shape[1])
            acc_tail += (logits_BLV.data[:, -self.last_l:].argmax(dim=-1) == gt_BL[:, -self.last_l:]).sum() * (100 / self.last_l)
            tot += B
        self.var_wo_ddp.train(training)
        
        stats = L_mean.new_tensor([L_mean.item(), L_tail.item(), acc_mean.item(), acc_tail.item(), tot])
        dist.allreduce(stats)
        tot = round(stats[-1].item())
        stats /= tot
        L_mean, L_tail, acc_mean, acc_tail, _ = stats.tolist()
        return L_mean, L_tail, acc_mean, acc_tail, tot, time.time()-stt
    
    def train_step(
        self, it: int, g_it: int, stepping: bool, metric_lg: MetricLogger, tb_lg: TensorboardLogger,
        inp_B3HW: FTen, label_B: Union[ITen, FTen], prog_si: int, prog_wp_it: float,
    ) -> Tuple[Optional[Union[Ten, float]], Optional[float]]:
        # if progressive training
        self.var_wo_ddp.prog_si = self.vae_local.quantize.prog_si = prog_si
        if self.last_prog_si != prog_si:
            if self.last_prog_si != -1: self.first_prog = False
            self.last_prog_si = prog_si
            self.prog_it = 0
        self.prog_it += 1
        prog_wp = max(min(self.prog_it / prog_wp_it, 1), 0.01)
        if self.first_prog: prog_wp = 1    # no prog warmup at first prog stage, as it's already solved in wp
        if prog_si == len(self.patch_nums) - 1: prog_si = -1    # max prog, as if no prog
        
        # forward
        B, V = label_B.shape[0], self.vae_local.vocab_size
        self.var.require_backward_grad_sync = stepping
        
        gt_idx_Bl: List[ITen] = self.vae_local.img_to_idxBl(inp_B3HW)
        gt_BL = torch.cat(gt_idx_Bl, dim=1)
        x_BLCv_wo_first_l: Ten = self.quantize_local.idxBl_to_var_input(gt_idx_Bl)
        
        with self.var_opt.amp_ctx:
            self.var_wo_ddp.forward
            logits_BLV = self.var(label_B, x_BLCv_wo_first_l)
            loss = self.train_loss(logits_BLV.view(-1, V), gt_BL.view(-1)).view(B, -1)
            if prog_si >= 0:    # in progressive training
                bg, ed = self.begin_ends[prog_si]
                assert logits_BLV.shape[1] == gt_BL.shape[1] == ed
                lw = self.loss_weight[:, :ed].clone()
                lw[:, bg:ed] *= min(max(prog_wp, 0), 1)
            else:               # not in progressive training
                lw = self.loss_weight
            loss = loss.mul(lw).sum(dim=-1).mean()
        
        # backward
        grad_norm, scale_log2 = self.var_opt.backward_clip_step(loss=loss, stepping=stepping)
        
        # log
        pred_BL = logits_BLV.data.argmax(dim=-1)
        if it == 0 or it in metric_lg.log_iters:
            Lmean = self.val_loss(logits_BLV.data.view(-1, V), gt_BL.view(-1)).item()
            acc_mean = (pred_BL == gt_BL).float().mean().item() * 100
            if prog_si >= 0:    # in progressive training
                Ltail = acc_tail = -1
            else:               # not in progressive training
                Ltail = self.val_loss(logits_BLV.data[:, -self.last_l:].reshape(-1, V), gt_BL[:, -self.last_l:].reshape(-1)).item()
                acc_tail = (pred_BL[:, -self.last_l:] == gt_BL[:, -self.last_l:]).float().mean().item() * 100
            grad_norm = grad_norm.item()
            metric_lg.update(Lm=Lmean, Lt=Ltail, Accm=acc_mean, Acct=acc_tail, tnm=grad_norm)
        
        # log to tensorboard
        if g_it == 0 or (g_it + 1) % 500 == 0:
            prob_per_class_is_chosen = pred_BL.view(-1).bincount(minlength=V).float()
            dist.allreduce(prob_per_class_is_chosen)
            prob_per_class_is_chosen /= prob_per_class_is_chosen.sum()
            cluster_usage = (prob_per_class_is_chosen > 0.001 / V).float().mean().item() * 100
            if dist.is_master():
                if g_it == 0:
                    tb_lg.update(head='AR_iter_loss', z_voc_usage=cluster_usage, step=-10000)
                    tb_lg.update(head='AR_iter_loss', z_voc_usage=cluster_usage, step=-1000)
                kw = dict(z_voc_usage=cluster_usage)
                for si, (bg, ed) in enumerate(self.begin_ends):
                    if 0 <= prog_si < si: break
                    pred, tar = logits_BLV.data[:, bg:ed].reshape(-1, V), gt_BL[:, bg:ed].reshape(-1)
                    acc = (pred.argmax(dim=-1) == tar).float().mean().item() * 100
                    ce = self.val_loss(pred, tar).item()
                    kw[f'acc_{self.resos[si]}'] = acc
                    kw[f'L_{self.resos[si]}'] = ce
                tb_lg.update(head='AR_iter_loss', **kw, step=g_it)
                tb_lg.update(head='AR_iter_schedule', prog_a_reso=self.resos[prog_si], prog_si=prog_si, prog_wp=prog_wp, step=g_it)
        
        self.var_wo_ddp.prog_si = self.vae_local.quantize.prog_si = -1
        return grad_norm, scale_log2
    
    def get_config(self):
        return {
            'patch_nums':   self.patch_nums, 'resos': self.resos,
            'label_smooth': self.label_smooth,
            'prog_it':      self.prog_it, 'last_prog_si': self.last_prog_si, 'first_prog': self.first_prog,
        }
    
    def state_dict(self):
        state = {'config': self.get_config()}
        for k in ('var_wo_ddp', 'vae_local', 'var_opt'):
            m = getattr(self, k)
            if m is not None:
                if hasattr(m, '_orig_mod'):
                    m = m._orig_mod
                state[k] = m.state_dict()
        return state
    
    def load_state_dict(self, state, strict=True, skip_vae=False):
        for k in ('var_wo_ddp', 'vae_local', 'var_opt'):
            if skip_vae and 'vae' in k: continue
            m = getattr(self, k)
            if m is not None:
                if hasattr(m, '_orig_mod'):
                    m = m._orig_mod
                ret = m.load_state_dict(state[k], strict=strict)
                if ret is not None:
                    missing, unexpected = ret
                    print(f'[VARTrainer.load_state_dict] {k} missing:  {missing}')
                    print(f'[VARTrainer.load_state_dict] {k} unexpected:  {unexpected}')
        
        config: dict = state.pop('config', None)
        self.prog_it = config.get('prog_it', 0)
        self.last_prog_si = config.get('last_prog_si', -1)
        self.first_prog = config.get('first_prog', True)
        if config is not None:
            for k, v in self.get_config().items():
                if config.get(k, None) != v:
                    err = f'[VAR.load_state_dict] config mismatch:  this.{k}={v} (ckpt.{k}={config.get(k, None)})'
                    if strict: raise AttributeError(err)
                    else: print(err)