test.py 3.34 KB
Newer Older
suily's avatar
suily committed
1
2
3
4
5
6
7
8
9
10
11
################## 1. 下载检查点,构建模型
import os
import os.path as osp
import torch, torchvision
import random
import numpy as np
import PIL.Image as PImage, PIL.ImageDraw as PImageDraw
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None)     # 禁用默认参数init以获得更快的速度
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None)  # 禁用默认参数init以获得更快的速度
from models import VQVAE, build_vae_var

suily's avatar
suily committed
12
os.environ["HIP_VISIBLE_DEVICES"] = "2"
suily's avatar
suily committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
print(torch.cuda.get_device_name(0))
MODEL_DEPTH = 16    # TODO:更改此处,指定模型
assert MODEL_DEPTH in {16, 20, 24, 30}


# download checkpoint
model_path="./checkpoint/"  # TODO:更改此处,指定模型地址
hf_home = 'https://huggingface.co/FoundationVision/var/resolve/main'
vae_ckpt, var_ckpt = model_path+'vae_ch160v4096z32.pth', model_path+f'var_d{MODEL_DEPTH}.pth'
assert os.path.exists(f'{vae_ckpt}')
assert os.path.exists(f'{var_ckpt}')
# if not osp.exists(vae_ckpt): os.system(f'wget {hf_home}/{vae_ckpt}')
# if not osp.exists(var_ckpt): os.system(f'wget {hf_home}/{var_ckpt}')

# build vae, var
patch_nums = (1, 2, 3, 4, 5, 6, 8, 10, 13, 16)
device = 'cuda' if torch.cuda.is_available() else exit()
if 'vae' not in globals() or 'var' not in globals():
    vae, var = build_vae_var(
        V=4096, Cvae=32, ch=160, share_quant_resi=4,    # 硬编码VQVAE超参数
        device=device, patch_nums=patch_nums,
        num_classes=1000, depth=MODEL_DEPTH, shared_aln=False,
    )

# load checkpoints
vae.load_state_dict(torch.load(vae_ckpt, map_location='cpu'), strict=True)
var.load_state_dict(torch.load(var_ckpt, map_location='cpu'), strict=True)
vae.eval(), var.eval()
for p in vae.parameters(): p.requires_grad_(False)
for p in var.parameters(): p.requires_grad_(False)
print(f'prepare finished.')
############################# 2. 使用无分类器指导的采样

# set args
seed = 0 #@param {type:"number"}
torch.manual_seed(seed)
num_sampling_steps = 250 #@param {type:"slider", min:0, max:1000, step:1}
cfg = 4 #@param {type:"slider", min:1, max:10, step:0.1}
class_labels = (980, 980, 437, 437, 22, 22, 562, 562)  #@param {type:"raw"} # TODO:更改此处,修改imagenet标签(标签类别映射文件在VAR/dataset中),决定了生成的图像类别
more_smooth = False # True for more smooth output

# seed
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

# run faster
tf32 = True
torch.backends.cudnn.allow_tf32 = bool(tf32)
torch.backends.cuda.matmul.allow_tf32 = bool(tf32)
torch.set_float32_matmul_precision('high' if tf32 else 'highest')

# sample
B = len(class_labels)
label_B: torch.LongTensor = torch.tensor(class_labels, device=device)
with torch.inference_mode():  # 推理,生成图像张量
    with torch.autocast('cuda', enabled=True, dtype=torch.float16, cache_enabled=True):    # 设置训练精度
        recon_B3HW = var.autoregressive_infer_cfg(B=B, label_B=label_B, cfg=cfg, top_k=900, top_p=0.95, g_seed=seed, more_smooth=more_smooth)

chw = torchvision.utils.make_grid(recon_B3HW, nrow=8, padding=0, pad_value=1.0)  # 处理显示图像
chw = chw.permute(1, 2, 0).mul_(255).cpu().numpy()
chw = PImage.fromarray(chw.astype(np.uint8))
chw.save("./result/inference.png")  # TODO:更改此处,指定推理结果存储地址
suily's avatar
suily committed
78
# chw.show()