featurization.py 6.28 KB
Newer Older
zhangqha's avatar
zhangqha committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch
import torch.nn as nn
from typing import Dict

from unifold.data import residue_constants as rc
from .frame import Frame
from unicore.utils import (
    batched_gather,
    one_hot,
)


def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks):
    is_gly = aatype == rc.restype_order["G"]
    ca_idx = rc.atom_order["CA"]
    cb_idx = rc.atom_order["CB"]
    pseudo_beta = torch.where(
        is_gly[..., None].expand(*((-1,) * len(is_gly.shape)), 3),
        all_atom_positions[..., ca_idx, :],
        all_atom_positions[..., cb_idx, :],
    )

    if all_atom_masks is not None:
        pseudo_beta_mask = torch.where(
            is_gly,
            all_atom_masks[..., ca_idx],
            all_atom_masks[..., cb_idx],
        )
        return pseudo_beta, pseudo_beta_mask
    else:
        return pseudo_beta


def atom14_to_atom37(atom14, batch):
    atom37_data = batched_gather(
        atom14,
        batch["residx_atom37_to_atom14"],
        dim=-2,
        num_batch_dims=len(atom14.shape[:-2]),
    )

    atom37_data = atom37_data * batch["atom37_atom_exists"][..., None]

    return atom37_data


def build_template_angle_feat(template_feats, v2_feature=False):
    template_aatype = template_feats["template_aatype"]
    torsion_angles_sin_cos = template_feats["template_torsion_angles_sin_cos"]
    torsion_angles_mask = template_feats["template_torsion_angles_mask"]
    if not v2_feature:
        alt_torsion_angles_sin_cos = template_feats[
            "template_alt_torsion_angles_sin_cos"
        ]
        template_angle_feat = torch.cat(
            [
                one_hot(template_aatype, 22),
                torsion_angles_sin_cos.reshape(*torsion_angles_sin_cos.shape[:-2], 14),
                alt_torsion_angles_sin_cos.reshape(
                    *alt_torsion_angles_sin_cos.shape[:-2], 14
                ),
                torsion_angles_mask,
            ],
            dim=-1,
        )
        template_angle_mask = torsion_angles_mask[..., 2]
    else:
        chi_mask = torsion_angles_mask[..., 3:]
        chi_angles_sin = torsion_angles_sin_cos[..., 3:, 0] * chi_mask
        chi_angles_cos = torsion_angles_sin_cos[..., 3:, 1] * chi_mask
        template_angle_feat = torch.cat(
            [
                one_hot(template_aatype, 22),
                chi_angles_sin,
                chi_angles_cos,
                chi_mask,
            ],
            dim=-1,
        )
        template_angle_mask = chi_mask[..., 0]
    return template_angle_feat, template_angle_mask


def build_template_pair_feat(
    batch,
    min_bin,
    max_bin,
    num_bins,
    eps=1e-20,
    inf=1e8,
):
    template_mask = batch["template_pseudo_beta_mask"]
    template_mask_2d = template_mask[..., None] * template_mask[..., None, :]

    tpb = batch["template_pseudo_beta"]
    dgram = torch.sum(
        (tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True
    )
    lower = torch.linspace(min_bin, max_bin, num_bins, device=tpb.device) ** 2
    upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1)
    dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype)

    to_concat = [dgram, template_mask_2d[..., None]]

    aatype_one_hot = nn.functional.one_hot(
        batch["template_aatype"],
        rc.restype_num + 2,
    )

    n_res = batch["template_aatype"].shape[-1]
    to_concat.append(
        aatype_one_hot[..., None, :, :].expand(
            *aatype_one_hot.shape[:-2], n_res, -1, -1
        )
    )
    to_concat.append(
        aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1)
    )

    to_concat.append(template_mask_2d.new_zeros(*template_mask_2d.shape, 3))
    to_concat.append(template_mask_2d[..., None])

    act = torch.cat(to_concat, dim=-1)
    act = act * template_mask_2d[..., None]

    return act


def build_template_pair_feat_v2(
    batch,
    min_bin,
    max_bin,
    num_bins,
    multichain_mask_2d=None,
    eps=1e-20,
    inf=1e8,
):
    template_mask = batch["template_pseudo_beta_mask"]
    template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
    if multichain_mask_2d is not None:
        template_mask_2d *= multichain_mask_2d

    tpb = batch["template_pseudo_beta"]
    dgram = torch.sum(
        (tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True
    )
    lower = torch.linspace(min_bin, max_bin, num_bins, device=tpb.device) ** 2
    upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1)
    dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype)
    dgram *= template_mask_2d[..., None]
    to_concat = [dgram, template_mask_2d[..., None]]

    aatype_one_hot = one_hot(
        batch["template_aatype"],
        rc.restype_num + 2,
    )

    n_res = batch["template_aatype"].shape[-1]
    to_concat.append(
        aatype_one_hot[..., None, :, :].expand(
            *aatype_one_hot.shape[:-2], n_res, -1, -1
        )
    )
    to_concat.append(
        aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1)
    )

    n, ca, c = [rc.atom_order[a] for a in ["N", "CA", "C"]]
    rigids = Frame.make_transform_from_reference(
        n_xyz=batch["template_all_atom_positions"][..., n, :],
        ca_xyz=batch["template_all_atom_positions"][..., ca, :],
        c_xyz=batch["template_all_atom_positions"][..., c, :],
        eps=eps,
    )
    points = rigids.get_trans()[..., None, :, :]
    rigid_vec = rigids[..., None].invert_apply(points)

    inv_distance_scalar = torch.rsqrt(eps + torch.sum(rigid_vec**2, dim=-1))

    t_aa_masks = batch["template_all_atom_mask"]
    backbone_mask = t_aa_masks[..., n] * t_aa_masks[..., ca] * t_aa_masks[..., c]
    backbone_mask_2d = backbone_mask[..., :, None] * backbone_mask[..., None, :]
    if multichain_mask_2d is not None:
        backbone_mask_2d *= multichain_mask_2d

    inv_distance_scalar = inv_distance_scalar * backbone_mask_2d
    unit_vector_data = rigid_vec * inv_distance_scalar[..., None]
    to_concat.extend(torch.unbind(unit_vector_data[..., None, :], dim=-1))
    to_concat.append(backbone_mask_2d[..., None])

    return to_concat


def build_extra_msa_feat(batch):
    msa_1hot = one_hot(batch["extra_msa"], 23)
    msa_feat = [
        msa_1hot,
        batch["extra_msa_has_deletion"].unsqueeze(-1),
        batch["extra_msa_deletion_value"].unsqueeze(-1),
    ]
    return torch.cat(msa_feat, dim=-1)