import torch import torch.nn as nn from typing import Dict from unifold.data import residue_constants as rc from .frame import Frame from unicore.utils import ( batched_gather, one_hot, ) def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks): is_gly = aatype == rc.restype_order["G"] ca_idx = rc.atom_order["CA"] cb_idx = rc.atom_order["CB"] pseudo_beta = torch.where( is_gly[..., None].expand(*((-1,) * len(is_gly.shape)), 3), all_atom_positions[..., ca_idx, :], all_atom_positions[..., cb_idx, :], ) if all_atom_masks is not None: pseudo_beta_mask = torch.where( is_gly, all_atom_masks[..., ca_idx], all_atom_masks[..., cb_idx], ) return pseudo_beta, pseudo_beta_mask else: return pseudo_beta def atom14_to_atom37(atom14, batch): atom37_data = batched_gather( atom14, batch["residx_atom37_to_atom14"], dim=-2, num_batch_dims=len(atom14.shape[:-2]), ) atom37_data = atom37_data * batch["atom37_atom_exists"][..., None] return atom37_data def build_template_angle_feat(template_feats, v2_feature=False): template_aatype = template_feats["template_aatype"] torsion_angles_sin_cos = template_feats["template_torsion_angles_sin_cos"] torsion_angles_mask = template_feats["template_torsion_angles_mask"] if not v2_feature: alt_torsion_angles_sin_cos = template_feats[ "template_alt_torsion_angles_sin_cos" ] template_angle_feat = torch.cat( [ one_hot(template_aatype, 22), torsion_angles_sin_cos.reshape(*torsion_angles_sin_cos.shape[:-2], 14), alt_torsion_angles_sin_cos.reshape( *alt_torsion_angles_sin_cos.shape[:-2], 14 ), torsion_angles_mask, ], dim=-1, ) template_angle_mask = torsion_angles_mask[..., 2] else: chi_mask = torsion_angles_mask[..., 3:] chi_angles_sin = torsion_angles_sin_cos[..., 3:, 0] * chi_mask chi_angles_cos = torsion_angles_sin_cos[..., 3:, 1] * chi_mask template_angle_feat = torch.cat( [ one_hot(template_aatype, 22), chi_angles_sin, chi_angles_cos, chi_mask, ], dim=-1, ) template_angle_mask = chi_mask[..., 0] return template_angle_feat, template_angle_mask def build_template_pair_feat( batch, min_bin, max_bin, num_bins, eps=1e-20, inf=1e8, ): template_mask = batch["template_pseudo_beta_mask"] template_mask_2d = template_mask[..., None] * template_mask[..., None, :] tpb = batch["template_pseudo_beta"] dgram = torch.sum( (tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True ) lower = torch.linspace(min_bin, max_bin, num_bins, device=tpb.device) ** 2 upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1) dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype) to_concat = [dgram, template_mask_2d[..., None]] aatype_one_hot = nn.functional.one_hot( batch["template_aatype"], rc.restype_num + 2, ) n_res = batch["template_aatype"].shape[-1] to_concat.append( aatype_one_hot[..., None, :, :].expand( *aatype_one_hot.shape[:-2], n_res, -1, -1 ) ) to_concat.append( aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1) ) to_concat.append(template_mask_2d.new_zeros(*template_mask_2d.shape, 3)) to_concat.append(template_mask_2d[..., None]) act = torch.cat(to_concat, dim=-1) act = act * template_mask_2d[..., None] return act def build_template_pair_feat_v2( batch, min_bin, max_bin, num_bins, multichain_mask_2d=None, eps=1e-20, inf=1e8, ): template_mask = batch["template_pseudo_beta_mask"] template_mask_2d = template_mask[..., None] * template_mask[..., None, :] if multichain_mask_2d is not None: template_mask_2d *= multichain_mask_2d tpb = batch["template_pseudo_beta"] dgram = torch.sum( (tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True ) lower = torch.linspace(min_bin, max_bin, num_bins, device=tpb.device) ** 2 upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1) dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype) dgram *= template_mask_2d[..., None] to_concat = [dgram, template_mask_2d[..., None]] aatype_one_hot = one_hot( batch["template_aatype"], rc.restype_num + 2, ) n_res = batch["template_aatype"].shape[-1] to_concat.append( aatype_one_hot[..., None, :, :].expand( *aatype_one_hot.shape[:-2], n_res, -1, -1 ) ) to_concat.append( aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1) ) n, ca, c = [rc.atom_order[a] for a in ["N", "CA", "C"]] rigids = Frame.make_transform_from_reference( n_xyz=batch["template_all_atom_positions"][..., n, :], ca_xyz=batch["template_all_atom_positions"][..., ca, :], c_xyz=batch["template_all_atom_positions"][..., c, :], eps=eps, ) points = rigids.get_trans()[..., None, :, :] rigid_vec = rigids[..., None].invert_apply(points) inv_distance_scalar = torch.rsqrt(eps + torch.sum(rigid_vec**2, dim=-1)) t_aa_masks = batch["template_all_atom_mask"] backbone_mask = t_aa_masks[..., n] * t_aa_masks[..., ca] * t_aa_masks[..., c] backbone_mask_2d = backbone_mask[..., :, None] * backbone_mask[..., None, :] if multichain_mask_2d is not None: backbone_mask_2d *= multichain_mask_2d inv_distance_scalar = inv_distance_scalar * backbone_mask_2d unit_vector_data = rigid_vec * inv_distance_scalar[..., None] to_concat.extend(torch.unbind(unit_vector_data[..., None, :], dim=-1)) to_concat.append(backbone_mask_2d[..., None]) return to_concat def build_extra_msa_feat(batch): msa_1hot = one_hot(batch["extra_msa"], 23) msa_feat = [ msa_1hot, batch["extra_msa_has_deletion"].unsqueeze(-1), batch["extra_msa_deletion_value"].unsqueeze(-1), ] return torch.cat(msa_feat, dim=-1)