README.md 6.08 KB
Newer Older
dcuai's avatar
dcuai committed
1
# UNet
Sugon_ldc's avatar
Sugon_ldc committed
2
3
## 论文
`U-Net: Convolutional Networks for Biomedical Image Segmentation`
Rayyyyy's avatar
Rayyyyy committed
4
- https://arxiv.org/pdf/1505.04597.pdf
Sugon_ldc's avatar
Sugon_ldc committed
5
6
7
8
9
10
11
12
13
14
15
16

## 模型结构
U-Net模型是一种基于编码器-解码器结构的卷积神经网络,通过不断降采样和上采样的操作,将输入图像映射到相应的分割结果,使得模型具有有效的特征提取和高分辨率分割的能力。
![unet_architecture](unet_architecture.png)

## 算法原理
U-Net模型通过编码器部分进行特征提取,然后通过对称的解码器部分进行特征重建和上采样操作,最终将低分辨率的特征映射转化为高分辨率的分割结果,实现图像分割任务。
![unet](unet.png)

## 环境配置
### Docker(方法一)
```
dcuai's avatar
dcuai committed
17
docker pull image.sourcefind.cn:5000/dcu/admin/base/paddlepaddle:2.5.2-ubuntu20.04-dtk24.04.1-py3.8
Sugon_ldc's avatar
Sugon_ldc committed
18

dcuai's avatar
dcuai committed
19
docker run -it -v /path/your_code_data/:/path/your_code_data/ --shm-size=32G -v /opt/hyhal:/opt/hyhal:ro --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash
Sugon_ldc's avatar
Sugon_ldc committed
20
21
22
23
24
25
26
#进入容器后
pip install opencv-python==3.4.10.35
pip install PyYAML==6.0
pip install sklearn==0.0
pip install filelock==3.9.0
pip install visualdl==2.5.0
```
Rayyyyy's avatar
Rayyyyy committed
27

Sugon_ldc's avatar
Sugon_ldc committed
28
29
30
### Dockerfile(方法二)
```
docker build --no-cache -t unet_paddle:v1.0 .
dcuai's avatar
dcuai committed
31
docker run -it -v /path/your_code_data/:/path/your_code_data/ --shm-size=32G  -v /opt/hyhal:/opt/hyhal:ro   --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash
Sugon_ldc's avatar
Sugon_ldc committed
32
#进入容器后
Sugon_ldc's avatar
Sugon_ldc committed
33
34
35
36
37
pip install opencv-python==3.4.10.35
pip install PyYAML==6.0
pip install sklearn==0.0
pip install filelock==3.9.0
pip install visualdl==2.5.0
Sugon_ldc's avatar
Sugon_ldc committed
38
```
Rayyyyy's avatar
Rayyyyy committed
39

Sugon_ldc's avatar
Sugon_ldc committed
40
41
42
### Anaconda(方法三)
此处提供本地配置、编译的详细步骤,例如:

chenzk's avatar
chenzk committed
43
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.sourcefind.cn/tool/)开发者社区下载安装。
Sugon_ldc's avatar
Sugon_ldc committed
44
```
dcuai's avatar
dcuai committed
45
DTK驱动:dtk24.04.1
Sugon_ldc's avatar
Sugon_ldc committed
46
python:python3.8
dcuai's avatar
dcuai committed
47
paddle:2.5.2
Sugon_ldc's avatar
Sugon_ldc committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
```
`Tips:以上dtk驱动、python、paddle等DCU相关工具版本需要严格一一对应`

之后安装如下三方库

```
pip install opencv-python==3.4.10.35
pip install PyYAML==6.0
pip install sklearn==0.0
pip install filelock==3.9.0
pip install visualdl==2.5.0
```

## 数据集
`cityscapes`
chenzk's avatar
chenzk committed
63
- https://www.cityscapes-dataset.com/
Sugon_ldc's avatar
Sugon_ldc committed
64

Sugon_ldc's avatar
Sugon_ldc committed
65
数据集结构如下:
dcuai's avatar
dcuai committed
66
数据集存放位置为/data路径下
Sugon_ldc's avatar
Sugon_ldc committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
```
├── cityscapesScripts
│   ├── cityscapesscripts
│   │   ├── annotation
│   │   ├── download
│   │   ├── evaluation
│   │   ├── helpers
│   │   ├── __init__.py
│   │   ├── preparation
│   │   ├── VERSION
│   │   └── viewer
│   ├── docs
│   │   ├── Box3DImageTransform.ipynb
│   │   └── csCalibration.pdf
│   ├── LICENSE
│   ├── README.md
│   ├── setup.cfg
│   └── setup.py
├── gtFine
│   ├── test
│   │   ├── berlin
│   │   ├── bielefeld
│   │   ├── bonn
│   │   ├── leverkusen
│   │   ├── mainz
│   │   └── munich
│   ├── train
│   │   ├── aachen
│   │   ├── bochum
│   │   ├── bremen
│   │   ├── cologne
│   │   ├── darmstadt
│   │   ├── dusseldorf
│   │   ├── erfurt
│   │   ├── hamburg
│   │   ├── hanover
│   │   ├── jena
│   │   ├── krefeld
│   │   ├── monchengladbach
│   │   ├── strasbourg
│   │   ├── stuttgart
│   │   ├── tubingen
│   │   ├── ulm
│   │   ├── weimar
│   │   └── zurich
│   └── val
│       ├── frankfurt
│       ├── lindau
│       └── munster
└── leftImg8bit
    ├── test
    │   ├── berlin
    │   ├── bielefeld
    │   ├── bonn
    │   ├── leverkusen
    │   ├── mainz
    │   └── munich
    ├── train
    │   ├── aachen
    │   ├── bochum
    │   ├── bremen
    │   ├── cologne
    │   ├── darmstadt
    │   ├── dusseldorf
    │   ├── erfurt
    │   ├── hamburg
    │   ├── hanover
    │   ├── jena
    │   ├── krefeld
    │   ├── monchengladbach
    │   ├── strasbourg
    │   ├── stuttgart
    │   ├── tubingen
    │   ├── ulm
    │   ├── weimar
    │   └── zurich
    └── val
        ├── frankfurt
        ├── lindau
        └── munster
```

dcuai's avatar
dcuai committed
149
<!--### 数据预处理
Sugon_ldc's avatar
Sugon_ldc committed
150
在主目录下执行
Sugon_ldc's avatar
Sugon_ldc committed
151
152
153
154
155

```
pip install -e .
```

Sugon_ldc's avatar
Sugon_ldc committed
156
修改configs/\_base_\/cityscapes.yml中两处dataset_root值为数据集路径
Sugon_ldc's avatar
Sugon_ldc committed
157
158
159
160
161
162
163
164

![data](data.png)

执行如下指令完成数据的预处理过程

```
pip install cityscapesscripts
python tools/data/convert_cityscapes.py --cityscapes_path data/cityscapes --num_workers 8
dcuai's avatar
dcuai committed
165
```-->
Sugon_ldc's avatar
Sugon_ldc committed
166
167
168

## 训练
### 单机多卡
dcuai's avatar
dcuai committed
169
170
171

下载model.pdparams并存放在/data/unet/train路径下
- https://bj.bcebos.com/paddleseg/dygraph/cityscapes/unet_cityscapes_1024x512_160k/model.pdparams
dcuai's avatar
dcuai committed
172

Sugon_ldc's avatar
Sugon_ldc committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
```
export HIP_VISIBLE_DEVICES=0,1,2,3
export HSA_FORCE_FINE_GRAIN_PCIE=1
export HIP_UPSAMPLE_OPTIMIZE=1

python -m paddle.distributed.launch tools/train.py --config configs/unet/unet_cityscapes_1024x512_160k.yml --do_eval --use_vdl --save_interval 176 --save_dir /data/unetouput --log_iters 1 --log_dir /data/pid.txt 2>&1 | tee unet_dcu_`date +%Y%m%d%H%M%S`.log
```

## result

![result](result.png)


### 精度
Sugon_ldc's avatar
Sugon_ldc committed
187
测试数据:cityscapes数据集,使用的加速卡:Z100L。
Sugon_ldc's avatar
Sugon_ldc committed
188
189
190
191
192

根据测试结果情况填写表格:
| 卡数 | 准确率 |
| :------: | :------: |
| 4 | 63.92% |
Rayyyyy's avatar
Rayyyyy committed
193

Sugon_ldc's avatar
Sugon_ldc committed
194
195
## 应用场景
### 算法类别
Rayyyyy's avatar
Rayyyyy committed
196
图像分割
Sugon_ldc's avatar
Sugon_ldc committed
197
198

### 热点应用行业
Rayyyyy's avatar
Rayyyyy committed
199
医疗,交通,家居
Sugon_ldc's avatar
Sugon_ldc committed
200
201

## 源码仓库及问题反馈
chenzk's avatar
chenzk committed
202
- https://developer.sourcefind.cn/codes/modelzoo/unet_paddle
Rayyyyy's avatar
Rayyyyy committed
203

Sugon_ldc's avatar
Sugon_ldc committed
204
## 参考资料
Sugon_ldc's avatar
Sugon_ldc committed
205
- https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.7/configs/unet