README.md 22.3 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
English | [简体中文](README_cn.md)

# PP-HumanSeg

**Content**
- 1 Introduction
- 2 News
- 3 PP-HumanSeg Models
- 4 Quick Start
- 5 Training and Finetuning
- 6 Deployment


## 1 Introduction

Human segmentation is a high-frequency application in the field of image segmentation.
Generally, human segentation can be classified as portrait segmentation and general human segmentation.

For portrait segmentation and general human segmentation, PaddleSeg releases the PP-HumanSeg models, which has **good performance in accuracy, inference speed and robustness**. Besides, we can deploy PP-HumanSeg models to products without training
Besides, PP-HumanSeg models can be deployed to products at zero cost, and it also support fine-tuning to achieve better performance.

The following is demonstration videos (due to the video is large, the loading will be slightly slow) .We provide full-process application guides from training to deployment, as well as video streaming segmentation and background replacement tutorials. Based on Paddle.js, you can experience the effects of [Portrait Snapshot](https://paddlejs.baidu.com/humanseg), [Video Background Replacement and Barrage Penetration](https://www.paddlepaddle.org.cn/paddlejs).

<p align="center">
<img src="https://github.com/juncaipeng/raw_data/blob/master/images/portrait_bg_replace_1.gif" height="200">
<img src="https://github.com/LutaoChu/transfer_station/raw/master/conference.gif" height="200">
</p>

## 2 News
- [2022-7] Release PP-HumanSeg V2 models. **The inference speed of portrait segmentation model is increased by 45.5%, mIoU is increased by 3.03%, and the visualization result is better**. The general human segmentation models also have improvement in accuracy and inference speed.
- [2022-1] Human segmentation paper [PP-HumanSeg](./paper.md) was published in WACV 2022 Workshop, and open-sourced Connectivity Learning (SCL) method and large-scale video conferencing dataset.
- [2021-7] Baidu Video Conference can realize one-second joining on the web side. The virtual background function adopts our portrait segmentation model to realize real-time background replacement and background blur function, which protects user privacy and increases the fun in the meeting.
- [2021-7] Release PP-HumanSeg V1 models, which has a portrait segmentation model and three general human segmentation models

<p align="center">
<img src="https://user-images.githubusercontent.com/30695251/149886667-f47cab88-e81a-4fd7-9f32-fbb34a5ed7ce.png"  height="200">        <img src="https://user-images.githubusercontent.com/30695251/149887482-d1fcd5d3-2cce-41b5-819b-bfc7126b7db4.png"  height="200">
</p>

## 3 Community

* If you have any questions, suggestions and feature requests, please create an issues in [GitHub Issues](https://github.com/PaddlePaddle/PaddleSeg/issues).
* Welcome to scan the following QR code and join paddleseg wechat group to communicate with us.
<div align="center">
<img src="https://user-images.githubusercontent.com/48433081/174770518-e6b5319b-336f-45d9-9817-da12b1961fb1.jpg"  width = "200" />  
</div>

## 4 PP-HumanSeg Models

### 4.1 Portrait Segmentation Models

We release self-developed portrait segmentation models for real-time applications such as mobile video and web conferences. These models can be directly integrated into products at zero cost.

PP-HumanSegV1-Lite protrait segmentation model: It has good performance in accuracy and model size and the model architecture in [url](../../configs/pp_humanseg_lite/).

PP-HumanSegV2-Lite protrait segmentation model: **The inference speed is increased by 45.5%, mIoU is increased by 3.03%, and the visualization result is better** compared to v1 model. These improvements are relayed on the following innovations.
  * Higher segmentation accuracy: We use the super lightweight models ([url](../../configs/mobileseg/)) released in PaddleSeg recently. We choose MobileNetV3 as backbone and design the multi-scale feature aggregation model.
  * Faster inference speed: We reduce the input resolution, which reduces the inference time and increases the receptive field.
  * Better robustness: Based on the idea of transfer learning, we first pretrain the model on a large general human segmentation dataset, and then finetune it on a small portrait segmentation dataset.

| Model Name | Best Input Shape | mIou(%) | Inference Time on Arm CPU(ms) | Modle Size(MB) | Config File | Links |
| --- | --- | --- | ---| --- | --- | --- |
| PP-HumanSegV1-Lite | 398x224 | 93.60 | 29.68 | 2.3 | [cfg](./configs/portrait_pp_humansegv1_lite.yml) | [Checkpoint](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/portrait_pp_humansegv1_lite_398x224_pretrained.zip) \| [Inference Model (Argmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/portrait_pp_humansegv1_lite_398x224_inference_model.zip) \| [Inference Model (Softmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/portrait_pp_humansegv1_lite_398x224_inference_model_with_softmax.zip) |
| PP-HumanSegV2-Lite | 256x144 | 96.63 | 15.86 | 5.4 | [cfg](./configs/portrait_pp_humansegv2_lite.yml) | [Checkpoint](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/portrait_pp_humansegv2_lite_256x144_smaller/portrait_pp_humansegv2_lite_256x144_pretrained.zip) \| [Inference Model (Argmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/portrait_pp_humansegv2_lite_256x144_smaller/portrait_pp_humansegv2_lite_256x144_inference_model.zip) \| [Inference Model (Softmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/portrait_pp_humansegv2_lite_256x144_smaller/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax.zip) |

<details><summary>Note:</summary>

* Test the segmentation accuracy (mIoU): We test the above models on PP-HumanSeg-14K dataset with the best input shape.
* Test the inference time: Use [PaddleLite](https://www.paddlepaddle.org.cn/lite), xiaomi9 (Snapdragon 855 CPU), single thread, the best input shape.
* For the best input shape, the ratio of height and width is 16:9, which is the same as the camera of mobile phone and laptop.
* The checkpoint is the pretrained weight, which is used for finetune.
* Inference model is used for deployment.
* Inference Model (Argmax): The last operation of inference model is argmax, so the output has single channel.
* Inference Model (Softmax): The last operation of inerence model is softmax, so the output has two channels.
</details>

<details><summary>Usage:</summary>

* Portrait segmentation model can be directly integrated into products at zero cost.
* For mobile phone, there are horizontal and vertical screen. We need to rotate the image to keep the human direction always be vertical.
</details>


### 4.2 General Human Segmentation Models

For general human segmentation task, we first build a big human segmentation dataset, then use the SOTA model in PaddleSeg for training, finally release several general human segmentation models.

PP-HumanSegV2-Lite general human segmentation model: It uses the super lightweight models ([url](../../configs/mobileseg/)) released in PaddleSeg recently. Compared to V1 model, the mIoU is improved by 6.5%.

PP-HumanSegV2-Mobile general human segmentation model: It uses the self-develop [PP-LiteSeg](../../configs/pp_liteseg/) model. Compared to V1 model, the mIoU is improved by 1.49% and the inference time is reduced by 5.7%.

| Model Name | Best Input Shape | mIou(%) | Inference Time on ARM CPU(ms) | Inference Time on Nvidia GPU(ms) | Config File | Links |
| ----- | ---------- | ---------- | -----------------| ----------------- | ------- | ------- |
| PP-HumanSegV1-Lite   | 192x192 | 86.02 | 12.3  | -    | [cfg](./configs/human_pp_humansegv1_lite.yml)   | [Checkpoint](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv1_lite_192x192_pretrained.zip) \| [Inference Model (Argmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv1_lite_192x192_inference_model.zip) \| [Inference Model (Softmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv1_lite_192x192_inference_model_with_softmax.zip) |
| PP-HumanSegV2-Lite   | 192x192 | 92.52 | 15.3  | -    | [cfg](./configs/human_pp_humansegv2_lite.yml)   | [Checkpoint](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv2_lite_192x192_pretrained.zip) \| [Inference Model (Argmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv2_lite_192x192_inference_model.zip) \| [Inference Model (Softmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv2_lite_192x192_inference_model_with_softmax.zip) |
| PP-HumanSegV1-Mobile | 192x192 | 91.64 |  -    | 2.83 | [cfg](./configs/human_pp_humansegv1_mobile.yml) | [Checkpoint](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv1_mobile_192x192_pretrained.zip) \| [Inference Model (Argmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv1_mobile_192x192_inference_model.zip) \| [Inference Model (Softmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv1_mobile_192x192_inference_model_with_softmax.zip) |
| PP-HumanSegV2-Mobile | 192x192 | 93.13 |  -    | 2.67 | [cfg](./configs/human_pp_humansegv2_mobile.yml) | [Checkpoint](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv2_mobile_192x192_pretrained.zip) \| [Inference Model (Argmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv2_mobile_192x192_inference_model.zip) \| [Inference Model (Softmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv2_mobile_192x192_inference_model_with_softmax.zip) |
| PP-HumanSegV1-Server | 512x512 | 96.47 |  -    | 24.9 | [cfg](./configs/human_pp_humansegv1_server.yml) | [Checkpoint](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv1_server_512x512_pretrained.zip) \| [Inference Model (Argmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv1_server_512x512_inference_model.zip) \| [Inference Model (Softmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/human_pp_humansegv1_server_512x512_inference_model_with_softmax.zip) |


<details><summary>Note:</summary>

* Test the segmentation accuracy (mIoU): After training the models on big human segmentation dataset, we test these models on small Supervisely Person dataset ([url](https://paddleseg.bj.bcebos.com/humanseg/data/mini_supervisely.zip)).
* Test the inference time: Use [PaddleLite](https://www.paddlepaddle.org.cn/lite), xiaomi9 (Snapdragon 855 CPU), single thread, the best input shape.
* The checkpoint is the pretrained weight, which is used for finetune.
* Inference model is used for deployment.
* Inference Model (Argmax): The last operation of inference model is argmax, so the output has single channel.
* Inference Model (Softmax): The last operation of inerence model is softmax, so the output has two channels.
</details>

<details><summary>Usage:</summary>

* Since the image of general human segmentation is various, you should evaluate the release model according to the actual scene.
* If the segmentation accuracy is not satisfied, you should annotate images and finetune the model with pretrained weights.
</details>


## 5 Quick Start

### 5.1 Prepare Environment

Install PaddlePaddle:
* PaddlePaddle >= 2.2.0
* Python >= 3.7+

Due to the high computational cost of the image segmentation model, it is recommended to use PaddleSeg under the GPU version of PaddlePaddle. Please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html) for the installation tutorial.


Run the following command to download PaddleSegn and install the required libs.

```shell
git clone https://github.com/PaddlePaddle/PaddleSeg
cd PaddleSeg
pip install -r requirements.txt
```



### 5.2 Prepare Models and Data

We run following commands under `PaddleSeg/contrib/PP-HumanSeg`.

```shell
cd PaddleSeg/contrib/PP-HumanSeg
```

Download the inference models and save them in `inference_models`.

```bash
python src/download_inference_models.py
```

Download and save test data in `data`.

```bash
python src/download_data.py
```

### 5.3 Portrait Segmentation

We use `src/seg_demo.py` to show the portrait segmentation and background replacement.

The input of `src/seg_demo.py` can be image, video and camera. The input params are as following.

| Params  | Detail | Type | Required | Default Value |
| -    | -    | -   |  -       | -     |
| config          | The path of `deploy.yaml` in infernece model      | str | True | - |
| img_path        | The path of input image                           | str | False  | - |
| video_path      | The path of input video                           | str | False  | - |
| bg_img_path     | The path of background image                      | str | False  | - |
| bg_video_path   | The path of background video                      | str | False  | - |
| save_dir        | The directory for saveing output image and video  | str | False  | `./output` |
| vertical_screen | Indicate the input image and video is vertical screen | store_true | False | False |
| use_post_process| Enable the post process for predicted logit           | store_true | False  | False |
| use_optic_flow  | Enable the optic_flow function                        | store_true | False  | False |

<details><summary>Note:</summary>

* If set img_path, it reads image to predict. If set video_path, it load video to predict.
* If not set img_path and video_path, it uses camera to shoot video for predicting.
* It assumes the input image and video are horizontal screen, i.e. the width is bigger than height. If the image and video are vertical screen, please add `--vertical_screen`.
* We can use optical flow algorithm to mitigate the video jitter (Require opencv-python > 4.0).
</details>

**1)Use Image to Test**

Read horizontal screen image `data/images/portrait_heng.jpg` and use PP-HumanSeg to predict. The results are saved in `data/images_result/`.

```bash
# Use PP-HumanSegV2-Lite
python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax/deploy.yaml \
  --img_path data/images/portrait_heng.jpg \
  --save_dir data/images_result/portrait_heng_v2.jpg

# Use PP-HumanSegV1-Lite
python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv1_lite_398x224_inference_model_with_softmax/deploy.yaml \
  --img_path data/images/portrait_heng.jpg \
  --save_dir data/images_result/portrait_heng_v1.jpg
```

Read vertical screen image `data/images/portrait_shu.jpg` and use PP-HumanSeg to predict.

```bash
python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax/deploy.yaml \
  --img_path data/images/portrait_shu.jpg \
  --save_dir data/images_result/portrait_shu_v2.jpg \
  --vertical_screen
```

Use background image to replace the background of input image.

```bash
python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax/deploy.yaml \
  --img_path data/images/portrait_heng.jpg \
  --bg_img_path data/images/bg_2.jpg \
  --save_dir data/images_result/portrait_heng_v2_withbg.jpg

python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax/deploy.yaml \
  --img_path data/images/portrait_shu.jpg \
  --bg_img_path data/images/bg_1.jpg \
  --save_dir data/images_result/portrait_shu_v2_withbg.jpg \
  --vertical_screen
```

**2)Use Video to Test**

Load horizontal screen video `data/videos/video_heng.mp4` and use PP-HumanSeg to predict. The results are saved in `data/videos_result/`.

```bash
# Use PP-HumanSegV2-Lite
python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax/deploy.yaml \
  --video_path data/videos/video_heng.mp4 \
  --save_dir data/videos_result/video_heng_v2.avi

python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax/deploy.yaml \
  --video_path data/videos/video_heng.mp4 \
  --use_post_process \
  --save_dir data/videos_result/video_heng_v2_use_post_process.avi

# Use PP-HumanSegV1-Lite
python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv1_lite_398x224_inference_model_with_softmax/deploy.yaml \
  --video_path data/videos/video_heng.mp4 \
  --save_dir data/videos_result/video_heng_v1.avi
```

Load vertical screen video `data/videos/video_shu.mp4` and use PP-HumanSeg to predict.


```bash
python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax/deploy.yaml \
  --video_path data/videos/video_shu.mp4 \
  --save_dir data/videos_result/video_shu_v2.avi \
  --vertical_screen
```

Use background image to replace the background of input video.

```bash
python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax/deploy.yaml \
  --video_path data/videos/video_heng.mp4 \
  --bg_img_path data/images/bg_2.jpg \
  --use_post_process \
  --save_dir data/videos_result/video_heng_v2_withbg_usepostprocess.avi
```

Besides, we can use  DIS(Dense Inverse Search-basedmethod) algorithm to mitigate the flicker of video.

```bash
python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax/deploy.yaml \
  --video_path data/videos/video_shu.mp4 \
  --save_dir data/videos_result/video_shu_v2_use_optic_flow.avi \
  --vertical_screen \
  --use_optic_flow
```

**3)Use Camera to Test**

Open camera to capture video (horizontal screen) and use PP-HumanSeg to predict.

```bash
python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax/deploy.yaml
```

Open camera to capture video (horizontal screen) and use PP-HumanSeg to predict with background image.


```bash
python src/seg_demo.py \
  --config inference_models/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax/deploy.yaml \
  --bg_img_path data/images/bg_2.jpg
```

The result of video portrait segmentation as follows.

<p align="center">
<img src="https://paddleseg.bj.bcebos.com/humanseg/data/video_test.gif"  height="200">  
<img src="https://paddleseg.bj.bcebos.com/humanseg/data/result.gif"  height="200">
</p>


The result of background replacement as follows.

<p align="center">
<img src="https://paddleseg.bj.bcebos.com/humanseg/data/video_test.gif"  height="200">  
<img src="https://paddleseg.bj.bcebos.com/humanseg/data/bg_replace.gif"  height="200">
</p>

### 5.4 Online Tutorial

PP-HumanSeg V1 provides an online tutorial ([url](https://aistudio.baidu.com/aistudio/projectdetail/2189481)) in AI Studio.

PP-HumanSeg V2 provides an online tutorial ([url](https://aistudio.baidu.com/aistudio/projectdetail/4504982)) in AI Studio.

## 6 Training and Finetuning

Since the image for segmentation is various, you should evaluate the release model according to the actual scene.
If the segmentation accuracy is not satisfied, you should annotate images and finetune the model with pretrained weights.

We use the general human segmentation of PP-HumanSeg to show the training, evaluating and exporting.

### 6.1 Prepare

Refer to the "Quick Start  -  Prepare Environment", install Paddle and PaddleSeg.

Run the following command to download `mini_supervisely` dataset. Refer to the "Quick Start  -  Prepare Models and Data" for detailed information.
```bash
python src/download_data.py
```

Run the following command to download pretrained models.
```bash
python src/download_pretrained_models.py
```

### 6.2 Training

The config files are saved in `./configs` as follows. We have set the path of pretrained weight in all config files.

```
configs
├── human_pp_humansegv1_lite.yml
├── human_pp_humansegv2_lite.yml
├── human_pp_humansegv1_mobile.yml
├── human_pp_humansegv2_mobile.yml
├── human_pp_humansegv1_server.yml
```

Run the following command to start finetuning. You should change the details, such as learn rate, according to the actual situation. The full usage of model training in [url](../../docs/train/train.md).

```bash
export CUDA_VISIBLE_DEVICES=0 # Set GPU on Linux
# set CUDA_VISIBLE_DEVICES=0  # Set GPU on Windows
python ../../tools/train.py \
  --config configs/human_pp_humansegv2_lite.yml \
  --save_dir output/human_pp_humansegv2_lite \
  --save_interval 100 --do_eval --use_vdl
```

### 6.3 Evaluation

Load model and trained weights and start model evaluation. The full usage of model evaluation in [url](../../docs/evaluation/evaluate/evaluate.md).

```bash
python ../../tools/val.py \
  --config configs/human_pp_humansegv2_lite.yml \
  --model_path pretrained_models/human_pp_humansegv2_lite_192x192_pretrained/model.pdparams
```

### 6.4 Prediction

Load model and trained weights and start model prediction. The result are saved in `./data/images_result/added_prediction` and `./data/images_result/pseudo_color_prediction`

```bash
python ../../tools/predict.py \
  --config configs/human_pp_humansegv2_lite.yml \
  --model_path pretrained_models/human_pp_humansegv2_lite_192x192_pretrained/model.pdparams \
  --image_path data/images/human.jpg \
  --save_dir ./data/images_result
```

### 6.5 Exporting

Load model and trained weights and export inference model. The full usage of model exporting in [url](../../docs/model_export.md).

```shell
python ../../tools/export.py \
  --config configs/human_pp_humansegv2_lite.yml \
  --model_path pretrained_models/human_pp_humansegv2_lite_192x192_pretrained/model.pdparams \
  --save_dir output/human_pp_humansegv2_lite \
  --without_argmax \
  --with_softmax
```

When set `--without_argmax --with_softmax`, the last operation of inference model is softmax.

## 7 Deployment

The PP-Humanseg inference models are deployed in the same way as other models.

Deployment on server with python api, refer to [doc](../../docs/deployment/inference/python_inference.md).

Deployment on server with c++ api, refer to [doc](../../docs/deployment/inference/cpp_inference.md).

Deployment on edge dvices, refer to [doc](../../docs/deployment/lite/lite.md).

<p align="center">
<img src="../../deploy/lite/example/human_1.png"  height="200">  
<img src="../../deploy/lite/example/human_2.png"  height="200">
<img src="../../deploy/lite/example/human_3.png"  height="200">
</p>


Deployment on web, refer to [doc](../../docs/deployment/web/web.md).

<p align="center">
<img src="https://user-images.githubusercontent.com/10822846/118273079-127bf480-b4f6-11eb-84c0-8a0bbc7c7433.png"  height="200">
</p>