README.md 4.2 KB
Newer Older
yongshk's avatar
yongshk committed
1
# UNET
yongshk's avatar
add new  
yongshk committed
2
3
4
5
## 论文
`U-Net: Convolutional Networks for Biomedical Image Segmentation`
- https://arxiv.org/abs/1505.04597

6
7
## 模型结构
UNet(全名 U-Net)是一种用于图像分割的卷积神经网络(CNN)架构,UNet 的结构具有 U 形状,因此得名。
yongshk's avatar
add new  
yongshk committed
8
![img](https://developer.hpccube.com/codes/modelzoo/unet-pytorch/-/raw/main/doc/unet.png)
9

yongshk's avatar
add new  
yongshk committed
10
11
12
13
14
15
## 算法原理
U-Net 的核心原理如下:

1. **编码器(Contracting Path)**:U-Net 的编码器由卷积层和池化层组成,用于捕捉图像的特征信息并逐渐减小分辨率。这一部分的任务是将输入图像缩小到一个低分辨率的特征图,同时保留有关图像内容的关键特征。
2. **中间层(Bottleneck)**:在编码器和解码器之间,U-Net 包括一个中间层,通常由卷积层组成,用于进一步提取特征信息。
3. **解码器(Expansive Path)**:U-Net 的解码器包括上采样层和卷积层,用于将特征图恢复到原始输入图像的分辨率。解码器的任务是将高级特征与低级特征相结合,以便生成分割结果。这一部分的结构与编码器相对称。
yongshk's avatar
add new  
yongshk committed
16
![img](https://developer.hpccube.com/codes/modelzoo/unet-pytorch/-/raw/main/doc/原理.png)
17

yongshk's avatar
add new  
yongshk committed
18
19
20
## 环境配置
### Docker(方法一)
```
dcuai's avatar
dcuai committed
21
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.13.1-centos7.6-dtk-23.04-py37-latest
yongshk's avatar
add new  
yongshk committed
22

yongshk's avatar
yongshk committed
23
docker run -it --network=host --name=unet --privileged --device=/dev/kfd --device=/dev/dri --ipc=host --shm-size=32G  --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root --ulimit stack=-1:-1 --ulimit memlock=-1:-1  image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-23.04-py37-latest
24
25
26

cd /path/unet-pytorch
pip install -r requirements.txt
yongshk's avatar
add new  
yongshk committed
27
```
yongshk's avatar
yongshk committed
28
29
30
31
32
### Dockerfile(方法二)
```
docker build --no-cache -t unet:latest .
docker run -dit --network=host --name=unet --privileged --device=/dev/kfd --device=/dev/dri --ipc=host --shm-size=16G  --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root --ulimit stack=-1:-1 --ulimit memlock=-1:-1 unet:latest
docker exec -it unet /bin/bash
33
34

cd /path/unet-pytorch
yongshk's avatar
yongshk committed
35
36
37
38
pip install -r requirements.txt
```

### Anaconda(方法三)
yongshk's avatar
add new  
yongshk committed
39
40
41
42
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.hpccube.com/tool/)开发者社区下载安装。
```
DTK驱动:dtk23.04
python:python3.7
43
44
45
apex:0.1+f49ddd4.abi0.dtk2304.torch1.13
torch:1.13.1+git55d300e.abi0.dtk2304
torchvision:0.14.1+git9134838.abi0.dtk2304.torch1.13
yongshk's avatar
add new  
yongshk committed
46
47
48
49
50
51
52
```
`Tips:以上dtk驱动、python等DCU相关工具版本需要严格一一对应`

其它非深度学习库参照requirements.txt安装:
```
pip install -r requirements.txt
```
53

yongshk's avatar
add new  
yongshk committed
54
55
56
57
## 数据集
`Carvana`
- https://www.kaggle.com/c/carvana-image-masking-challenge/data

58
下载命令:
yongshk's avatar
add new  
yongshk committed
59
60
61
```
bash scripts/download_data.sh
```
62

yongshk's avatar
add new  
yongshk committed
63
64
项目中已提供用于试验训练的迷你数据集,训练数据目录结构如下,用于正常训练的完整数据集请按此目录结构进行制备:
```
65
│ ── data
yongshk's avatar
add new  
yongshk committed
66
    │   ├── imgs
67
68
    │   ├────── fff9b3a5373f_15.jpg
    │   ├────── fff9b3a5373f_16.jpg
yongshk's avatar
add new  
yongshk committed
69
    │   └── masks
yongshk's avatar
yongshk committed
70
71
    │   ├────── fff9b3a5373f_15.gif
    │   ├────── fff9b3a5373f_16.gif
yongshk's avatar
add new  
yongshk committed
72
```
73

yongshk's avatar
add new  
yongshk committed
74
## 训练
yongshk's avatar
yongshk committed
75
76
77
78
### 单机单卡
```
python train.py
```
79

yongshk's avatar
add new  
yongshk committed
80
81
82
83
84
85
86
### 单机多卡
```
python -m torch.distributed.launch --nproc_per_node 4 train_ddp.py
```

## 推理
```
yongshk's avatar
yongshk committed
87
python predict.py -m model_path -i image.jpg -o output.jpg
yongshk's avatar
add new  
yongshk committed
88
89
```
## result
yongshk's avatar
add new  
yongshk committed
90
![rusult](https://developer.hpccube.com/codes/modelzoo/unet-pytorch/-/raw/main/doc/结果.png)
yongshk's avatar
add new  
yongshk committed
91
92
93
94
95

### 精度
测试数据:[test data](https://www.kaggle.com/c/carvana-image-masking-challenge/data),使用的加速卡:Z100L。(采用iou系数)

根据测试结果情况填写表格:
dcuai's avatar
dcuai committed
96
97
98
| Unet | 精度 |
| :------: | :------: |
| Carvana | 0.976 |
99

yongshk's avatar
add new  
yongshk committed
100
101
## 应用场景
### 算法类别
yongshk's avatar
yongshk committed
102
`图像分割`
yongshk's avatar
add new  
yongshk committed
103
104

### 热点应用行业
105
106
107
108
`医疗,交通,家居`

## 预训练权重
[SCNet AIModels - milesial-pytorch-unet-3.0](http://113.200.138.88:18080/aimodels/findsource-dependency/milesial-pytorch-unet-3.0)
yongshk's avatar
add new  
yongshk committed
109
110
111

## 源码仓库及问题反馈
- https://developer.hpccube.com/codes/modelzoo/unet-pytorch
112

yongshk's avatar
add new  
yongshk committed
113
114
## 参考资料
- https://github.com/milesial/Pytorch-Unet