README.md 2.18 KB
Newer Older
zhanggezhong's avatar
zhanggezhong committed
1
2
3
4
5
6
7
# ResNet50_v2
## 论文
`Deep Residual Learning for Image Recognition`
- https://arxiv.org/abs/1512.03385
## 模型结构
ResNet50网络中包含了49个卷积层、1个全连接层等

8
![image.png](./image.png)
zhanggezhong's avatar
zhanggezhong committed
9
10
11
## 算法原理
ResNet50使用了多个具有残差连接的残差块来解决梯度消失或梯度爆炸问题,并使得网络可以向更深层发展。

12
![image-1.png](./image-1.png)
zhanggezhong's avatar
zhanggezhong committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
## 模型文件
  模型文件下载地址: 
```
    "https://github.com/onnx/models/raw/main/vision/classification/resnet/model/resnet50-v2-7.onnx"
```
## 环境配置
### Docker(方法一)

拉取镜像:
```
    docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:tvm-0.11_fp32_cpp_dtk22.10_py38_centos-7.6-latest
```
创建并启动容器
```
docker run --shm-size 16g --network=host --name=ResNet50_v2 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/ResNet50_v2_tvm:/home/ResNet50_v2_tvm -it <Your Image ID> /bin/bash

# 激活dtk
source /opt/dtk/env.sh
```
## 数据集
  python 推理及调优代码使用的图片数据为:
```
    "https://s3.amazonaws.com/model-server/inputs/kitten.jpg"
``` 
  标签数据为:
```
    "https://s3.amazonaws.com/onnx-model-zoo/synset.txt"
```
   C++部署代码使用数据为:
```
    "https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip"
```
zhanggezhong's avatar
zhanggezhong committed
45
### 推理
zhanggezhong's avatar
zhanggezhong committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
  下载模型文件后执行以下命令进行推理测试及调优测试:
```
    python tune_resnet50-v2.py
```
    
    
### 单卡部署推理测试
  下载配置好镜像之后,cd /tvm-0.11-dev0/apps/ 进入该路径下,将代码下载放到该路径下,cd tvm_tune_resnet50-v2/ 进入该路径后,
执行以下命令:
```
    mkdir -p lib
    python prepare_test_libs.py
    sh run_example.sh
```
zhanggezhong's avatar
zhanggezhong committed
60
## 精度
zhanggezhong's avatar
zhanggezhong committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
```
    max_num:15.6692
    max_iter:0x28cda14
    max_num_index:345
``` 
## 应用场景

### 算法类别

图像分类

### 热点应用行业

制造,政府,医疗,科研
    
## 源码仓库及问题反馈

   * https://developer.hpccube.com/codes/modelzoo/tvm_tune_resnet50-v2

## 参考

zhanggezhong's avatar
zhanggezhong committed
82
   * [https://tvm.apache.org/docs/how_to/tune_with_autoscheduler/tune_network_cuda.html]()
zhanggezhong's avatar
zhanggezhong committed
83