mobilenet_v2.py 10.9 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import ConvModule, constant_init, kaiming_init
from mmcv.runner import load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm

from ...utils import get_root_logger
from ..builder import BACKBONES


def make_divisible(value, divisor, min_value=None, min_ratio=0.9):
    """Make divisible function.

    This function rounds the channel number down to the nearest value that can
    be divisible by the divisor.
    Args:
        value (int): The original channel number.
        divisor (int): The divisor to fully divide the channel number.
        min_value (int, optional): The minimum value of the output channel.
            Default: None, means that the minimum value equal to the divisor.
        min_ratio (float, optional): The minimum ratio of the rounded channel
            number to the original channel number. Default: 0.9.
    Returns:
        int: The modified output channel number
    """

    if min_value is None:
        min_value = divisor
    new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than (1-min_ratio).
    if new_value < min_ratio * value:
        new_value += divisor
    return new_value


class InvertedResidual(nn.Module):
    """InvertedResidual block for MobileNetV2.

    Args:
        in_channels (int): The input channels of the InvertedResidual block.
        out_channels (int): The output channels of the InvertedResidual block.
        stride (int): Stride of the middle (first) 3x3 convolution.
        expand_ratio (int): adjusts number of channels of the hidden layer
            in InvertedResidual by this amount.
        conv_cfg (dict): Config dict for convolution layer.
            Default: None, which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='BN').
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='ReLU6').
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
    Returns:
        Tensor: The output tensor
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 stride,
                 expand_ratio,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 act_cfg=dict(type='ReLU6'),
                 with_cp=False):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2], f'stride must in [1, 2]. ' \
            f'But received {stride}.'
        self.with_cp = with_cp
        self.use_res_connect = self.stride == 1 and in_channels == out_channels
        hidden_dim = int(round(in_channels * expand_ratio))

        layers = []
        if expand_ratio != 1:
            layers.append(
                ConvModule(
                    in_channels=in_channels,
                    out_channels=hidden_dim,
                    kernel_size=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg))
        layers.extend([
            ConvModule(
                in_channels=hidden_dim,
                out_channels=hidden_dim,
                kernel_size=3,
                stride=stride,
                padding=1,
                groups=hidden_dim,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg),
            ConvModule(
                in_channels=hidden_dim,
                out_channels=out_channels,
                kernel_size=1,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=None)
        ])
        self.conv = nn.Sequential(*layers)

    def forward(self, x):

        def _inner_forward(x):
            if self.use_res_connect:
                return x + self.conv(x)

            return self.conv(x)

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        return out


@BACKBONES.register_module()
class MobileNetV2(nn.Module):
    """MobileNetV2 backbone.

    Args:
        pretrained (str | None): Name of pretrained model. Default: None.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Default: 1.0.
        out_indices (None or Sequence[int]): Output from which stages.
            Default: (7, ).
        frozen_stages (int): Stages to be frozen (all param fixed). Note that
            the last stage in ``MobileNetV2`` is ``conv2``. Default: -1,
            which means not freezing any parameters.
        conv_cfg (dict): Config dict for convolution layer.
            Default: None, which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='BN').
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='ReLU6').
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
    """

    # Parameters to build layers. 4 parameters are needed to construct a
    # layer, from left to right: expand_ratio, channel, num_blocks, stride.
    arch_settings = [[1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2],
                     [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2],
                     [6, 320, 1, 1]]

    def __init__(self,
                 pretrained=None,
                 widen_factor=1.,
                 out_indices=(7, ),
                 frozen_stages=-1,
                 conv_cfg=dict(type='Conv'),
                 norm_cfg=dict(type='BN2d', requires_grad=True),
                 act_cfg=dict(type='ReLU6', inplace=True),
                 norm_eval=False,
                 with_cp=False):
        super().__init__()
        self.pretrained = pretrained
        self.widen_factor = widen_factor
        self.out_indices = out_indices
        for index in out_indices:
            if index not in range(0, 8):
                raise ValueError('the item in out_indices must in '
                                 f'range(0, 8). But received {index}')

        if frozen_stages not in range(-1, 9):
            raise ValueError('frozen_stages must be in range(-1, 9). '
                             f'But received {frozen_stages}')
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.norm_eval = norm_eval
        self.with_cp = with_cp

        self.in_channels = make_divisible(32 * widen_factor, 8)

        self.conv1 = ConvModule(
            in_channels=3,
            out_channels=self.in_channels,
            kernel_size=3,
            stride=2,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

        self.layers = []

        for i, layer_cfg in enumerate(self.arch_settings):
            expand_ratio, channel, num_blocks, stride = layer_cfg
            out_channels = make_divisible(channel * widen_factor, 8)
            inverted_res_layer = self.make_layer(
                out_channels=out_channels,
                num_blocks=num_blocks,
                stride=stride,
                expand_ratio=expand_ratio)
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, inverted_res_layer)
            self.layers.append(layer_name)

        if widen_factor > 1.0:
            self.out_channel = int(1280 * widen_factor)
        else:
            self.out_channel = 1280

        layer = ConvModule(
            in_channels=self.in_channels,
            out_channels=self.out_channel,
            kernel_size=1,
            stride=1,
            padding=0,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        self.add_module('conv2', layer)
        self.layers.append('conv2')

    def make_layer(self, out_channels, num_blocks, stride, expand_ratio):
        """Stack InvertedResidual blocks to build a layer for MobileNetV2.

        Args:
            out_channels (int): out_channels of block.
            num_blocks (int): number of blocks.
            stride (int): stride of the first block. Default: 1
            expand_ratio (int): Expand the number of channels of the
                hidden layer in InvertedResidual by this ratio. Default: 6.
        """
        layers = []
        for i in range(num_blocks):
            if i >= 1:
                stride = 1
            layers.append(
                InvertedResidual(
                    self.in_channels,
                    out_channels,
                    stride,
                    expand_ratio=expand_ratio,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    act_cfg=self.act_cfg,
                    with_cp=self.with_cp))
            self.in_channels = out_channels

        return nn.Sequential(*layers)

    def init_weights(self):
        if isinstance(self.pretrained, str):
            logger = get_root_logger()
            load_checkpoint(self, self.pretrained, strict=False, logger=logger)
        elif self.pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
                    constant_init(m, 1)
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, x):
        x = self.conv1(x)

        outs = []
        for i, layer_name in enumerate(self.layers):
            layer = getattr(self, layer_name)
            x = layer(x)
            if i in self.out_indices:
                outs.append(x)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            self.conv1.eval()
            for param in self.conv1.parameters():
                param.requires_grad = False
        for i in range(1, self.frozen_stages + 1):
            layer_name = self.layers[i - 1]
            layer = getattr(self, layer_name)
            layer.eval()
            for param in layer.parameters():
                param.requires_grad = False

    def train(self, mode=True):
        super(MobileNetV2, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                if isinstance(m, _BatchNorm):
                    m.eval()