# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn import torch.utils.checkpoint as cp from mmcv.cnn import ConvModule, constant_init, kaiming_init from mmcv.runner import load_checkpoint from torch.nn.modules.batchnorm import _BatchNorm from ...utils import get_root_logger from ..builder import BACKBONES def make_divisible(value, divisor, min_value=None, min_ratio=0.9): """Make divisible function. This function rounds the channel number down to the nearest value that can be divisible by the divisor. Args: value (int): The original channel number. divisor (int): The divisor to fully divide the channel number. min_value (int, optional): The minimum value of the output channel. Default: None, means that the minimum value equal to the divisor. min_ratio (float, optional): The minimum ratio of the rounded channel number to the original channel number. Default: 0.9. Returns: int: The modified output channel number """ if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than (1-min_ratio). if new_value < min_ratio * value: new_value += divisor return new_value class InvertedResidual(nn.Module): """InvertedResidual block for MobileNetV2. Args: in_channels (int): The input channels of the InvertedResidual block. out_channels (int): The output channels of the InvertedResidual block. stride (int): Stride of the middle (first) 3x3 convolution. expand_ratio (int): adjusts number of channels of the hidden layer in InvertedResidual by this amount. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU6'). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. Returns: Tensor: The output tensor """ def __init__(self, in_channels, out_channels, stride, expand_ratio, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU6'), with_cp=False): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2], f'stride must in [1, 2]. ' \ f'But received {stride}.' self.with_cp = with_cp self.use_res_connect = self.stride == 1 and in_channels == out_channels hidden_dim = int(round(in_channels * expand_ratio)) layers = [] if expand_ratio != 1: layers.append( ConvModule( in_channels=in_channels, out_channels=hidden_dim, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) layers.extend([ ConvModule( in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=3, stride=stride, padding=1, groups=hidden_dim, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg), ConvModule( in_channels=hidden_dim, out_channels=out_channels, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) ]) self.conv = nn.Sequential(*layers) def forward(self, x): def _inner_forward(x): if self.use_res_connect: return x + self.conv(x) return self.conv(x) if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out @BACKBONES.register_module() class MobileNetV2(nn.Module): """MobileNetV2 backbone. Args: pretrained (str | None): Name of pretrained model. Default: None. widen_factor (float): Width multiplier, multiply number of channels in each layer by this amount. Default: 1.0. out_indices (None or Sequence[int]): Output from which stages. Default: (7, ). frozen_stages (int): Stages to be frozen (all param fixed). Note that the last stage in ``MobileNetV2`` is ``conv2``. Default: -1, which means not freezing any parameters. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU6'). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. """ # Parameters to build layers. 4 parameters are needed to construct a # layer, from left to right: expand_ratio, channel, num_blocks, stride. arch_settings = [[1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1]] def __init__(self, pretrained=None, widen_factor=1., out_indices=(7, ), frozen_stages=-1, conv_cfg=dict(type='Conv'), norm_cfg=dict(type='BN2d', requires_grad=True), act_cfg=dict(type='ReLU6', inplace=True), norm_eval=False, with_cp=False): super().__init__() self.pretrained = pretrained self.widen_factor = widen_factor self.out_indices = out_indices for index in out_indices: if index not in range(0, 8): raise ValueError('the item in out_indices must in ' f'range(0, 8). But received {index}') if frozen_stages not in range(-1, 9): raise ValueError('frozen_stages must be in range(-1, 9). ' f'But received {frozen_stages}') self.out_indices = out_indices self.frozen_stages = frozen_stages self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.norm_eval = norm_eval self.with_cp = with_cp self.in_channels = make_divisible(32 * widen_factor, 8) self.conv1 = ConvModule( in_channels=3, out_channels=self.in_channels, kernel_size=3, stride=2, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.layers = [] for i, layer_cfg in enumerate(self.arch_settings): expand_ratio, channel, num_blocks, stride = layer_cfg out_channels = make_divisible(channel * widen_factor, 8) inverted_res_layer = self.make_layer( out_channels=out_channels, num_blocks=num_blocks, stride=stride, expand_ratio=expand_ratio) layer_name = f'layer{i + 1}' self.add_module(layer_name, inverted_res_layer) self.layers.append(layer_name) if widen_factor > 1.0: self.out_channel = int(1280 * widen_factor) else: self.out_channel = 1280 layer = ConvModule( in_channels=self.in_channels, out_channels=self.out_channel, kernel_size=1, stride=1, padding=0, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg) self.add_module('conv2', layer) self.layers.append('conv2') def make_layer(self, out_channels, num_blocks, stride, expand_ratio): """Stack InvertedResidual blocks to build a layer for MobileNetV2. Args: out_channels (int): out_channels of block. num_blocks (int): number of blocks. stride (int): stride of the first block. Default: 1 expand_ratio (int): Expand the number of channels of the hidden layer in InvertedResidual by this ratio. Default: 6. """ layers = [] for i in range(num_blocks): if i >= 1: stride = 1 layers.append( InvertedResidual( self.in_channels, out_channels, stride, expand_ratio=expand_ratio, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, with_cp=self.with_cp)) self.in_channels = out_channels return nn.Sequential(*layers) def init_weights(self): if isinstance(self.pretrained, str): logger = get_root_logger() load_checkpoint(self, self.pretrained, strict=False, logger=logger) elif self.pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) else: raise TypeError('pretrained must be a str or None') def forward(self, x): x = self.conv1(x) outs = [] for i, layer_name in enumerate(self.layers): layer = getattr(self, layer_name) x = layer(x) if i in self.out_indices: outs.append(x) if len(outs) == 1: return outs[0] return tuple(outs) def _freeze_stages(self): if self.frozen_stages >= 0: self.conv1.eval() for param in self.conv1.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): layer_name = self.layers[i - 1] layer = getattr(self, layer_name) layer.eval() for param in layer.parameters(): param.requires_grad = False def train(self, mode=True): super(MobileNetV2, self).train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval()