"official/projects/vit/configs/backbones.py" did not exist on "7793eb27bcf16f792baa2e0c0646a5730a9c2dd9"
builder.py 5.77 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) OpenMMLab. All rights reserved.
import platform
import random
from functools import partial

import numpy as np
import torch
from mmcv.parallel import collate
from mmcv.runner import get_dist_info
from mmcv.utils import Registry, build_from_cfg, digit_version
from torch.utils.data import DataLoader

from ..utils.multigrid import ShortCycleSampler
from .samplers import ClassSpecificDistributedSampler, DistributedSampler

if platform.system() != 'Windows':
    # https://github.com/pytorch/pytorch/issues/973
    import resource
    rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
    hard_limit = rlimit[1]
    soft_limit = min(4096, hard_limit)
    resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))

DATASETS = Registry('dataset')
PIPELINES = Registry('pipeline')
BLENDINGS = Registry('blending')


def build_dataset(cfg, default_args=None):
    """Build a dataset from config dict.

    Args:
        cfg (dict): Config dict. It should at least contain the key "type".
        default_args (dict | None, optional): Default initialization arguments.
            Default: None.

    Returns:
        Dataset: The constructed dataset.
    """
    dataset = build_from_cfg(cfg, DATASETS, default_args)
    return dataset


def build_dataloader(dataset,
                     videos_per_gpu,
                     workers_per_gpu,
                     num_gpus=1,
                     dist=True,
                     shuffle=True,
                     seed=None,
                     drop_last=False,
                     pin_memory=True,
                     persistent_workers=False,
                     **kwargs):
    """Build PyTorch DataLoader.

    In distributed training, each GPU/process has a dataloader.
    In non-distributed training, there is only one dataloader for all GPUs.

    Args:
        dataset (:obj:`Dataset`): A PyTorch dataset.
        videos_per_gpu (int): Number of videos on each GPU, i.e.,
            batch size of each GPU.
        workers_per_gpu (int): How many subprocesses to use for data
            loading for each GPU.
        num_gpus (int): Number of GPUs. Only used in non-distributed
            training. Default: 1.
        dist (bool): Distributed training/test or not. Default: True.
        shuffle (bool): Whether to shuffle the data at every epoch.
            Default: True.
        seed (int | None): Seed to be used. Default: None.
        drop_last (bool): Whether to drop the last incomplete batch in epoch.
            Default: False
        pin_memory (bool): Whether to use pin_memory in DataLoader.
            Default: True
        persistent_workers (bool): If True, the data loader will not shutdown
            the worker processes after a dataset has been consumed once.
            This allows to maintain the workers Dataset instances alive.
            The argument also has effect in PyTorch>=1.8.0.
            Default: False
        kwargs (dict, optional): Any keyword argument to be used to initialize
            DataLoader.

    Returns:
        DataLoader: A PyTorch dataloader.
    """
    rank, world_size = get_dist_info()
    sample_by_class = getattr(dataset, 'sample_by_class', False)

    short_cycle = kwargs.pop('short_cycle', False)
    multigrid_cfg = kwargs.pop('multigrid_cfg', None)
    crop_size = kwargs.pop('crop_size', 224)

    if dist:
        if sample_by_class:
            dynamic_length = getattr(dataset, 'dynamic_length', True)
            sampler = ClassSpecificDistributedSampler(
                dataset,
                world_size,
                rank,
                dynamic_length=dynamic_length,
                shuffle=shuffle,
                seed=seed)
        else:
            sampler = DistributedSampler(
                dataset, world_size, rank, shuffle=shuffle, seed=seed)
        shuffle = False
        batch_size = videos_per_gpu
        num_workers = workers_per_gpu

        if short_cycle:
            batch_sampler = ShortCycleSampler(sampler, batch_size,
                                              multigrid_cfg, crop_size)
            init_fn = partial(
                worker_init_fn, num_workers=num_workers, rank=rank,
                seed=seed) if seed is not None else None

            if digit_version(torch.__version__) >= digit_version('1.8.0'):
                kwargs['persistent_workers'] = persistent_workers

            data_loader = DataLoader(
                dataset,
                batch_sampler=batch_sampler,
                num_workers=num_workers,
                pin_memory=pin_memory,
                worker_init_fn=init_fn,
                **kwargs)
            return data_loader

    else:
        if short_cycle:
            raise NotImplementedError(
                'Short cycle using non-dist is not supported')

        sampler = None
        batch_size = num_gpus * videos_per_gpu
        num_workers = num_gpus * workers_per_gpu

    init_fn = partial(
        worker_init_fn, num_workers=num_workers, rank=rank,
        seed=seed) if seed is not None else None

    if digit_version(torch.__version__) >= digit_version('1.8.0'):
        kwargs['persistent_workers'] = persistent_workers

    data_loader = DataLoader(
        dataset,
        batch_size=batch_size,
        sampler=sampler,
        num_workers=num_workers,
        collate_fn=partial(collate, samples_per_gpu=videos_per_gpu),
        pin_memory=pin_memory,
        shuffle=shuffle,
        worker_init_fn=init_fn,
        drop_last=drop_last,
        **kwargs)

    return data_loader


def worker_init_fn(worker_id, num_workers, rank, seed):
    """Init the random seed for various workers."""
    # The seed of each worker equals to
    # num_worker * rank + worker_id + user_seed
    worker_seed = num_workers * rank + worker_id + seed
    np.random.seed(worker_seed)
    random.seed(worker_seed)
    torch.manual_seed(worker_seed)