# Copyright (c) OpenMMLab. All rights reserved. import platform import random from functools import partial import numpy as np import torch from mmcv.parallel import collate from mmcv.runner import get_dist_info from mmcv.utils import Registry, build_from_cfg, digit_version from torch.utils.data import DataLoader from ..utils.multigrid import ShortCycleSampler from .samplers import ClassSpecificDistributedSampler, DistributedSampler if platform.system() != 'Windows': # https://github.com/pytorch/pytorch/issues/973 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) hard_limit = rlimit[1] soft_limit = min(4096, hard_limit) resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) DATASETS = Registry('dataset') PIPELINES = Registry('pipeline') BLENDINGS = Registry('blending') def build_dataset(cfg, default_args=None): """Build a dataset from config dict. Args: cfg (dict): Config dict. It should at least contain the key "type". default_args (dict | None, optional): Default initialization arguments. Default: None. Returns: Dataset: The constructed dataset. """ dataset = build_from_cfg(cfg, DATASETS, default_args) return dataset def build_dataloader(dataset, videos_per_gpu, workers_per_gpu, num_gpus=1, dist=True, shuffle=True, seed=None, drop_last=False, pin_memory=True, persistent_workers=False, **kwargs): """Build PyTorch DataLoader. In distributed training, each GPU/process has a dataloader. In non-distributed training, there is only one dataloader for all GPUs. Args: dataset (:obj:`Dataset`): A PyTorch dataset. videos_per_gpu (int): Number of videos on each GPU, i.e., batch size of each GPU. workers_per_gpu (int): How many subprocesses to use for data loading for each GPU. num_gpus (int): Number of GPUs. Only used in non-distributed training. Default: 1. dist (bool): Distributed training/test or not. Default: True. shuffle (bool): Whether to shuffle the data at every epoch. Default: True. seed (int | None): Seed to be used. Default: None. drop_last (bool): Whether to drop the last incomplete batch in epoch. Default: False pin_memory (bool): Whether to use pin_memory in DataLoader. Default: True persistent_workers (bool): If True, the data loader will not shutdown the worker processes after a dataset has been consumed once. This allows to maintain the workers Dataset instances alive. The argument also has effect in PyTorch>=1.8.0. Default: False kwargs (dict, optional): Any keyword argument to be used to initialize DataLoader. Returns: DataLoader: A PyTorch dataloader. """ rank, world_size = get_dist_info() sample_by_class = getattr(dataset, 'sample_by_class', False) short_cycle = kwargs.pop('short_cycle', False) multigrid_cfg = kwargs.pop('multigrid_cfg', None) crop_size = kwargs.pop('crop_size', 224) if dist: if sample_by_class: dynamic_length = getattr(dataset, 'dynamic_length', True) sampler = ClassSpecificDistributedSampler( dataset, world_size, rank, dynamic_length=dynamic_length, shuffle=shuffle, seed=seed) else: sampler = DistributedSampler( dataset, world_size, rank, shuffle=shuffle, seed=seed) shuffle = False batch_size = videos_per_gpu num_workers = workers_per_gpu if short_cycle: batch_sampler = ShortCycleSampler(sampler, batch_size, multigrid_cfg, crop_size) init_fn = partial( worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None if digit_version(torch.__version__) >= digit_version('1.8.0'): kwargs['persistent_workers'] = persistent_workers data_loader = DataLoader( dataset, batch_sampler=batch_sampler, num_workers=num_workers, pin_memory=pin_memory, worker_init_fn=init_fn, **kwargs) return data_loader else: if short_cycle: raise NotImplementedError( 'Short cycle using non-dist is not supported') sampler = None batch_size = num_gpus * videos_per_gpu num_workers = num_gpus * workers_per_gpu init_fn = partial( worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None if digit_version(torch.__version__) >= digit_version('1.8.0'): kwargs['persistent_workers'] = persistent_workers data_loader = DataLoader( dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, collate_fn=partial(collate, samples_per_gpu=videos_per_gpu), pin_memory=pin_memory, shuffle=shuffle, worker_init_fn=init_fn, drop_last=drop_last, **kwargs) return data_loader def worker_init_fn(worker_id, num_workers, rank, seed): """Init the random seed for various workers.""" # The seed of each worker equals to # num_worker * rank + worker_id + user_seed worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed) torch.manual_seed(worker_seed)