demo.ipynb 2.68 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "pycharm": {
     "is_executing": false
    }
   },
   "outputs": [],
   "source": [
    "from mmaction.apis import init_recognizer, inference_recognizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "pycharm": {
     "is_executing": false
    }
   },
   "outputs": [],
   "source": [
    "config_file = '../configs/recognition/tsn/tsn_r50_video_inference_1x1x3_100e_kinetics400_rgb.py'\n",
    "# download the checkpoint from model zoo and put it in `checkpoints/`\n",
    "checkpoint_file = '../checkpoints/tsn_r50_1x1x3_100e_kinetics400_rgb_20200614-e508be42.pth'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "pycharm": {
     "is_executing": false
    }
   },
   "outputs": [],
   "source": [
    "# build the model from a config file and a checkpoint file\n",
    "model = init_recognizer(config_file, checkpoint_file, device='cpu')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "pycharm": {
     "is_executing": false
    }
   },
   "outputs": [],
   "source": [
    "# test a single video and show the result:\n",
    "video = 'demo.mp4'\n",
    "label = '../../tools/data/kinetics/label_map_k400.txt'\n",
    "results = inference_recognizer(model, video)\n",
    "\n",
    "labels = open(label).readlines()\n",
    "labels = [x.strip() for x in labels]\n",
    "results = [(labels[k[0]], k[1]) for k in results]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    },
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "arm wrestling:  29.61644\n",
      "rock scissors paper:  10.754839\n",
      "shaking hands:  9.9084\n",
      "clapping:  9.189912\n",
      "massaging feet:  8.305307\n"
     ]
    }
   ],
   "source": [
    "# show the results\n",
    "for result in results:\n",
    "    print(f'{result[0]}: ', result[1])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.4"
  },
  "pycharm": {
   "stem_cell": {
    "cell_type": "raw",
    "metadata": {
     "collapsed": false
    },
    "source": []
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}