{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "from mmaction.apis import init_recognizer, inference_recognizer" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "config_file = '../configs/recognition/tsn/tsn_r50_video_inference_1x1x3_100e_kinetics400_rgb.py'\n", "# download the checkpoint from model zoo and put it in `checkpoints/`\n", "checkpoint_file = '../checkpoints/tsn_r50_1x1x3_100e_kinetics400_rgb_20200614-e508be42.pth'" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "# build the model from a config file and a checkpoint file\n", "model = init_recognizer(config_file, checkpoint_file, device='cpu')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "# test a single video and show the result:\n", "video = 'demo.mp4'\n", "label = '../../tools/data/kinetics/label_map_k400.txt'\n", "results = inference_recognizer(model, video)\n", "\n", "labels = open(label).readlines()\n", "labels = [x.strip() for x in labels]\n", "results = [(labels[k[0]], k[1]) for k in results]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false }, "pycharm": { "is_executing": false, "name": "#%%\n" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "arm wrestling: 29.61644\n", "rock scissors paper: 10.754839\n", "shaking hands: 9.9084\n", "clapping: 9.189912\n", "massaging feet: 8.305307\n" ] } ], "source": [ "# show the results\n", "for result in results:\n", " print(f'{result[0]}: ', result[1])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 4 }