run_timesfm.py 4.3 KB
Newer Older
suily's avatar
suily committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Evaluation script for timesfm."""

import os
import sys
import time

from absl import flags
import numpy as np
import pandas as pd
from paxml import checkpoints
sys.path.append(os.getcwd())
from src import timesfm #TODO:路径
from experiments.extended_benchmarks.utils import ExperimentHandler
from jax.lib import xla_bridge

# sugon测试
dataset_names = [  # context_len=512
    "ett_small_15min",
suily's avatar
suily committed
33
34
35
    "traffic",
    "m3_quarterly",
    "m3_yearly",
suily's avatar
suily committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    "tourism_yearly",
]

# dataset_names = [
#     "m1_monthly",
#     "m1_quarterly",
#     "m1_yearly",
#     "m3_monthly",
#     "m3_other",
#     "m3_quarterly",
#     "m3_yearly",
#     "m4_quarterly",
#     "m4_yearly",
#     "tourism_monthly",
#     "tourism_quarterly",
#     "tourism_yearly",
#     "nn5_daily_without_missing",
#     "m5",
#     "nn5_weekly",
#     "traffic",
#     "weather",
#     "australian_electricity_demand",
#     "car_parts_without_missing",
#     "cif_2016",
#     "covid_deaths",
#     "ercot",
#     "ett_small_15min",
#     "ett_small_1h",
#     "exchange_rate",
#     "fred_md",
#     "hospital",
# ]

context_dict = {
    "cif_2016": 32,
    "tourism_yearly": 64,
    "covid_deaths": 64,
    "tourism_quarterly": 64,
    "tourism_monthly": 64,
    "m1_monthly": 64,
    "m1_quarterly": 64,
    "m1_yearly": 64,
    "m3_monthly": 64,
    "m3_other": 64,
    "m3_quarterly": 64,
    "m3_yearly": 64,
    "m4_quarterly": 64,
    "m4_yearly": 64,
}

# TODO:模型位置
_MODEL_PATH = flags.DEFINE_string(   
    "model_path", "model/checkpoints", "Path to model"
)

 #TODO: 参数调整
_BATCH_SIZE = flags.DEFINE_integer("batch_size", 64, "Batch size")
_HORIZON = flags.DEFINE_integer("horizon", 128, "Horizon")
_BACKEND = flags.DEFINE_string("backend", "gpu", "Backend")
_NUM_JOBS = flags.DEFINE_integer("num_jobs", 1, "Number of jobs")  
_SAVE_DIR = flags.DEFINE_string("save_dir", "./results", "Save directory")


QUANTILES = list(np.arange(1, 10) / 10.0)


def main():
  results_list = []
  tfm = timesfm.TimesFm( 
      context_len=512,
      horizon_len=_HORIZON.value,
      input_patch_len=32,
      output_patch_len=128,
      num_layers=20,
      model_dims=1280,
      backend=_BACKEND.value,
      per_core_batch_size=_BATCH_SIZE.value,
      quantiles=QUANTILES,
  )
  tfm.load_from_checkpoint(   # 检查点,加载模型
      _MODEL_PATH.value,
      checkpoint_type=checkpoints.CheckpointType.FLAX,
  )
  run_id = np.random.randint(100000)
  model_name = "timesfm"
  for dataset in dataset_names:
    print(f"Evaluating model {model_name} on dataset {dataset}", flush=True)
    exp = ExperimentHandler(dataset, quantiles=QUANTILES)

    if dataset in context_dict:
      context_len = context_dict[dataset]
    else:
      context_len = 512
    train_df = exp.train_df
    freq = exp.freq
    init_time = time.time()
    fcsts_df = tfm.forecast_on_df(
        inputs=train_df,
        freq=freq,
        value_name="y",
        model_name=model_name,
        forecast_context_len=context_len,
        num_jobs=_NUM_JOBS.value,
    )
    total_time = time.time() - init_time
    time_df = pd.DataFrame({"time": [total_time], "model": model_name})
    results = exp.evaluate_from_predictions(
        models=[model_name], fcsts_df=fcsts_df, times_df=time_df
    )
    print(results, flush=True)
    results_list.append(results)
    results_full = pd.concat(results_list)
    save_path = os.path.join(_SAVE_DIR.value, str(run_id))
    print(f"Saving results to {save_path}", flush=True)
    os.makedirs(save_path, exist_ok=True)
    results_full.to_csv(f"{save_path}/results.csv")


if __name__ == "__main__":
  # # debug1-测试torch-gpu\jax-gpu\TensorFlow-gpu
  jax_test=xla_bridge.get_backend().platform
  print(jax_test)
  if not (jax_test=='gpu'):
      exit()
    
  FLAGS = flags.FLAGS
  FLAGS(sys.argv)
  main()