# Copyright 2024 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluation script for timesfm.""" import os import sys import time from absl import flags import numpy as np import pandas as pd from paxml import checkpoints sys.path.append(os.getcwd()) from src import timesfm #TODO:路径 from experiments.extended_benchmarks.utils import ExperimentHandler from jax.lib import xla_bridge # sugon测试 dataset_names = [ # context_len=512 "ett_small_15min", "traffic", "m3_quarterly", "m3_yearly", "tourism_yearly", ] # dataset_names = [ # "m1_monthly", # "m1_quarterly", # "m1_yearly", # "m3_monthly", # "m3_other", # "m3_quarterly", # "m3_yearly", # "m4_quarterly", # "m4_yearly", # "tourism_monthly", # "tourism_quarterly", # "tourism_yearly", # "nn5_daily_without_missing", # "m5", # "nn5_weekly", # "traffic", # "weather", # "australian_electricity_demand", # "car_parts_without_missing", # "cif_2016", # "covid_deaths", # "ercot", # "ett_small_15min", # "ett_small_1h", # "exchange_rate", # "fred_md", # "hospital", # ] context_dict = { "cif_2016": 32, "tourism_yearly": 64, "covid_deaths": 64, "tourism_quarterly": 64, "tourism_monthly": 64, "m1_monthly": 64, "m1_quarterly": 64, "m1_yearly": 64, "m3_monthly": 64, "m3_other": 64, "m3_quarterly": 64, "m3_yearly": 64, "m4_quarterly": 64, "m4_yearly": 64, } # TODO:模型位置 _MODEL_PATH = flags.DEFINE_string( "model_path", "model/checkpoints", "Path to model" ) #TODO: 参数调整 _BATCH_SIZE = flags.DEFINE_integer("batch_size", 64, "Batch size") _HORIZON = flags.DEFINE_integer("horizon", 128, "Horizon") _BACKEND = flags.DEFINE_string("backend", "gpu", "Backend") _NUM_JOBS = flags.DEFINE_integer("num_jobs", 1, "Number of jobs") _SAVE_DIR = flags.DEFINE_string("save_dir", "./results", "Save directory") QUANTILES = list(np.arange(1, 10) / 10.0) def main(): results_list = [] tfm = timesfm.TimesFm( context_len=512, horizon_len=_HORIZON.value, input_patch_len=32, output_patch_len=128, num_layers=20, model_dims=1280, backend=_BACKEND.value, per_core_batch_size=_BATCH_SIZE.value, quantiles=QUANTILES, ) tfm.load_from_checkpoint( # 检查点,加载模型 _MODEL_PATH.value, checkpoint_type=checkpoints.CheckpointType.FLAX, ) run_id = np.random.randint(100000) model_name = "timesfm" for dataset in dataset_names: print(f"Evaluating model {model_name} on dataset {dataset}", flush=True) exp = ExperimentHandler(dataset, quantiles=QUANTILES) if dataset in context_dict: context_len = context_dict[dataset] else: context_len = 512 train_df = exp.train_df freq = exp.freq init_time = time.time() fcsts_df = tfm.forecast_on_df( inputs=train_df, freq=freq, value_name="y", model_name=model_name, forecast_context_len=context_len, num_jobs=_NUM_JOBS.value, ) total_time = time.time() - init_time time_df = pd.DataFrame({"time": [total_time], "model": model_name}) results = exp.evaluate_from_predictions( models=[model_name], fcsts_df=fcsts_df, times_df=time_df ) print(results, flush=True) results_list.append(results) results_full = pd.concat(results_list) save_path = os.path.join(_SAVE_DIR.value, str(run_id)) print(f"Saving results to {save_path}", flush=True) os.makedirs(save_path, exist_ok=True) results_full.to_csv(f"{save_path}/results.csv") if __name__ == "__main__": # # debug1-测试torch-gpu\jax-gpu\TensorFlow-gpu jax_test=xla_bridge.get_backend().platform print(jax_test) if not (jax_test=='gpu'): exit() FLAGS = flags.FLAGS FLAGS(sys.argv) main()