demo_textmonkey.py 4.85 KB
Newer Older
echo840's avatar
echo840 committed
1
2
3
4
5
6
7
import re
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
from monkey_model.modeling_textmonkey import TextMonkeyLMHeadModel
from monkey_model.tokenization_qwen import QWenTokenizer
from monkey_model.configuration_monkey import MonkeyConfig
from argparse import ArgumentParser
wanglch's avatar
wanglch committed
8
import torch
echo840's avatar
echo840 committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

def _get_args():
    parser = ArgumentParser()
    parser.add_argument("-c", "--checkpoint-path", type=str, default=None,
                        help="Checkpoint name or path, default to %(default)r")
    parser.add_argument("--share", action="store_true", default=True,
                        help="Create a publicly shareable link for the interface.")
    parser.add_argument("--server-port", type=int, default=7680,
                        help="Demo server port.")
    parser.add_argument("--server-name", type=str, default="127.0.0.1",
                        help="Demo server name.")

    args = parser.parse_args()
    return args
args = _get_args()
checkpoint_path = args.checkpoint_path
wanglch's avatar
wanglch committed
25
device_map = "auto"
echo840's avatar
echo840 committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Create model
config = MonkeyConfig.from_pretrained(
        checkpoint_path,
        trust_remote_code=True,
    )
model = TextMonkeyLMHeadModel.from_pretrained(checkpoint_path,
    config=config,
    device_map=device_map, trust_remote_code=True).eval()
tokenizer = QWenTokenizer.from_pretrained(checkpoint_path,
                                            trust_remote_code=True)
tokenizer.padding_side = 'left'
tokenizer.pad_token_id = tokenizer.eod_id
tokenizer.IMG_TOKEN_SPAN = config.visual["n_queries"]

title = "TextMonkey : An OCR-Free Large Multimodal Model for Understanding Document"

description = """
<font size=4>
Welcome to TextMonkey

Hello! I'm TextMonkey, a Large Language and Vision Assistant developed by HUST VLRLab and KingSoft.

You can click on the examples below the demo to display them.

## Example prompts for different tasks
You need to replace "Question" with your question.

1.**Read All Text:** Read all the text in the image.

2.**Text Spotting:** OCR with grounding:

3.**Position of Text:** &lt;ref&gt;"Question"&lt;/ref&gt;

4.**VQA:** "Question" Answer:

5.**VQA with Grounding:** "Question" Provide the location coordinates of the answer when answering the question.

6.**Output Json**: Convert the chart in this image to json format. Answer:(Convert the document in this image to json format. Answer:)(Convert the table in this image to json format. Answer:)
</font>
"""

def inference(input_str, input_image):    
    input_str = f"<img>{input_image}</img> {input_str}"
    input_ids = tokenizer(input_str, return_tensors='pt', padding='longest')

    attention_mask = input_ids.attention_mask
    input_ids = input_ids.input_ids
    
    pred = model.generate(
    input_ids=input_ids.cuda(),
    attention_mask=attention_mask.cuda(),
wanglch's avatar
wanglch committed
77
    do_sample=True,
echo840's avatar
echo840 committed
78
79
80
81
82
83
84
85
86
87
88
89
    num_beams=1,
    max_new_tokens=2048,
    min_new_tokens=1,
    length_penalty=1,
    num_return_sequences=1,
    output_hidden_states=True,
    use_cache=True,
    pad_token_id=tokenizer.eod_id,
    eos_token_id=tokenizer.eod_id,
    )
    response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=False).strip()
    image = Image.open(input_image).convert("RGB").resize((1000,1000))
wanglch's avatar
wanglch committed
90
    font = ImageFont.load_default()  # 使用系统默认字体
echo840's avatar
echo840 committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    bboxes = re.findall(r'<box>(.*?)</box>', response, re.DOTALL)
    refs = re.findall(r'<ref>(.*?)</ref>', response, re.DOTALL)
    if len(refs)!=0:
        num = min(len(bboxes), len(refs))
    else:
        num = len(bboxes)
    for box_id in range(num):
        bbox = bboxes[box_id]
        matches = re.findall( r"\((\d+),(\d+)\)", bbox)
        draw = ImageDraw.Draw(image)
        point_x = (int(matches[0][0])+int(matches[1][0]))/2
        point_y = (int(matches[0][1])+int(matches[1][1]))/2
        point_size = 8
        point_bbox = (point_x - point_size, point_y - point_size, point_x + point_size, point_y + point_size)
        draw.ellipse(point_bbox, fill=(255, 0, 0))
        if len(refs)!=0:
            text = refs[box_id]
            text_width, text_height = font.getsize(text)
            draw.text((point_x-text_width//2, point_y+8), text, font=font, fill=(255, 0, 0))
    response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()
    output_str = response
    output_image = image
    print(f"{input_str}   {response}")
    
    return output_image, output_str

demo = gr.Interface(
    inference,
    inputs=[
        gr.Textbox(lines=1, placeholder=None, label="Question"),
        gr.Image(type="filepath", label="Input Image"),
    ],
    outputs=[
        gr.Image(type="pil", label="Output Image"),
        gr.Textbox(lines=1, placeholder=None, label="TextMonkey's response"),
    ],
    title=title,
    description=description,
    allow_flagging="auto",
)

demo.queue()
demo.launch(
        server_name=args.server_name,
        server_port=args.server_port,
        share=args.share
    )