faceshq.py 5.38 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import numpy as np
import albumentations
from torch.utils.data import Dataset

from taming.data.base import ImagePaths, NumpyPaths, ConcatDatasetWithIndex


class FacesBase(Dataset):
    def __init__(self, *args, **kwargs):
        super().__init__()
        self.data = None
        self.keys = None

    def __len__(self):
        return len(self.data)

    def __getitem__(self, i):
        example = self.data[i]
        ex = {}
        if self.keys is not None:
            for k in self.keys:
                ex[k] = example[k]
        else:
            ex = example
        return ex


# class CelebAHQTrain(FacesBase):
#     def __init__(self, size, keys=None):
#         super().__init__()
#         root = "data/celebahq"
#         with open("data/celebahqtrain.txt", "r") as f:
#             relpaths = f.read().splitlines()
#         paths = [os.path.join(root, relpath) for relpath in relpaths]
#         self.data = NumpyPaths(paths=paths, size=size, random_crop=False)
#         self.keys = keys


# class CelebAHQValidation(FacesBase):
#     def __init__(self, size, keys=None):
#         super().__init__()
#         root = "data/celebahq"
#         with open("data/celebahqvalidation.txt", "r") as f:
#             relpaths = f.read().splitlines()
#         paths = [os.path.join(root, relpath) for relpath in relpaths]
#         self.data = NumpyPaths(paths=paths, size=size, random_crop=False)
#         self.keys = keys

class CelebAHQTrain(FacesBase):
    def __init__(self, size, keys=None):
        super().__init__()
        root = "data/celebahq"
        with open("data/celebahqtrain.txt", "r") as f:
            relpaths = f.read().splitlines()
        paths = [os.path.join(root, relpath) for relpath in relpaths]
        self.data = ImagePaths(paths=paths, size=size, random_crop=False)
        self.keys = keys


class CelebAHQValidation(FacesBase):
    def __init__(self, size, keys=None):
        super().__init__()
        root = "data/celebahq"
        with open("data/celebahqvalidation.txt", "r") as f:
            relpaths = f.read().splitlines()
        paths = [os.path.join(root, relpath) for relpath in relpaths]
        self.data = ImagePaths(paths=paths, size=size, random_crop=False)
        self.keys = keys


class FFHQTrain(FacesBase):
    def __init__(self, size, keys=None):
        super().__init__()
        root = "data/ffhq"
        with open("data/ffhqtrain.txt", "r") as f:
            relpaths = f.read().splitlines()
        paths = [os.path.join(root, relpath) for relpath in relpaths]
        self.data = ImagePaths(paths=paths, size=size, random_crop=False)
        self.keys = keys


class FFHQValidation(FacesBase):
    def __init__(self, size, keys=None):
        super().__init__()
        root = "data/ffhq"
        with open("data/ffhqvalidation.txt", "r") as f:
            relpaths = f.read().splitlines()
        paths = [os.path.join(root, relpath) for relpath in relpaths]
        self.data = ImagePaths(paths=paths, size=size, random_crop=False)
        self.keys = keys


class FacesHQTrain(Dataset):
    # CelebAHQ [0] + FFHQ [1]
    def __init__(self, size, keys=None, crop_size=None, coord=False):
        d1 = CelebAHQTrain(size=size, keys=keys)
        d2 = FFHQTrain(size=size, keys=keys)
        self.data = ConcatDatasetWithIndex([d1, d2])
        self.coord = coord
        if crop_size is not None:
            self.cropper = albumentations.RandomCrop(height=crop_size,width=crop_size)
            if self.coord:
                self.cropper = albumentations.Compose([self.cropper],
                                                      additional_targets={"coord": "image"})

    def __len__(self):
        return len(self.data)

    def __getitem__(self, i):
        ex, y = self.data[i]
        if hasattr(self, "cropper"):
            if not self.coord:
                out = self.cropper(image=ex["image"])
                ex["image"] = out["image"]
            else:
                h,w,_ = ex["image"].shape
                coord = np.arange(h*w).reshape(h,w,1)/(h*w)
                out = self.cropper(image=ex["image"], coord=coord)
                ex["image"] = out["image"]
                ex["coord"] = out["coord"]
        ex["class"] = y
        return ex


class FacesHQValidation(Dataset):
    # CelebAHQ [0] + FFHQ [1]
    def __init__(self, size, keys=None, crop_size=None, coord=False):
        d1 = CelebAHQValidation(size=size, keys=keys)
        d2 = FFHQValidation(size=size, keys=keys)
        self.data = ConcatDatasetWithIndex([d1, d2])
        self.coord = coord
        if crop_size is not None:
            self.cropper = albumentations.CenterCrop(height=crop_size,width=crop_size)
            if self.coord:
                self.cropper = albumentations.Compose([self.cropper],
                                                      additional_targets={"coord": "image"})

    def __len__(self):
        # return len(self.data)
        return 1000

    def __getitem__(self, i):
        ex, y = self.data[i]
        if hasattr(self, "cropper"):
            if not self.coord:
                out = self.cropper(image=ex["image"])
                ex["image"] = out["image"]
            else:
                h,w,_ = ex["image"].shape
                coord = np.arange(h*w).reshape(h,w,1)/(h*w)
                out = self.cropper(image=ex["image"], coord=coord)
                ex["image"] = out["image"]
                ex["coord"] = out["coord"]
        ex["class"] = y
        return ex