test_roi_extractor.py 1.95 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright (c) OpenMMLab. All rights reserved.
import torch

from mmaction.models import SingleRoIExtractor3D


def test_single_roi_extractor3d():
    roi_extractor = SingleRoIExtractor3D(
        roi_layer_type='RoIAlign',
        featmap_stride=16,
        output_size=8,
        sampling_ratio=0,
        pool_mode='avg',
        aligned=True,
        with_temporal_pool=True)
    feat = torch.randn([4, 64, 8, 16, 16])
    rois = torch.tensor([[0., 1., 1., 6., 6.], [1., 2., 2., 7., 7.],
                         [3., 2., 2., 9., 9.], [2., 2., 0., 10., 9.]])
    roi_feat, feat = roi_extractor(feat, rois)
    assert roi_feat.shape == (4, 64, 1, 8, 8)
    assert feat.shape == (4, 64, 1, 16, 16)

    feat = (torch.randn([4, 64, 8, 16, 16]), torch.randn([4, 32, 16, 16, 16]))
    roi_feat, feat = roi_extractor(feat, rois)
    assert roi_feat.shape == (4, 96, 1, 8, 8)
    assert feat.shape == (4, 96, 1, 16, 16)

    feat = torch.randn([4, 64, 8, 16, 16])
    roi_extractor = SingleRoIExtractor3D(
        roi_layer_type='RoIAlign',
        featmap_stride=16,
        output_size=8,
        sampling_ratio=0,
        pool_mode='avg',
        aligned=True,
        with_temporal_pool=False)
    roi_feat, feat = roi_extractor(feat, rois)
    assert roi_feat.shape == (4, 64, 8, 8, 8)
    assert feat.shape == (4, 64, 8, 16, 16)

    feat = (torch.randn([4, 64, 8, 16, 16]), torch.randn([4, 32, 16, 16, 16]))
    roi_feat, feat = roi_extractor(feat, rois)
    assert roi_feat.shape == (4, 96, 16, 8, 8)
    assert feat.shape == (4, 96, 16, 16, 16)

    feat = torch.randn([4, 64, 8, 16, 16])
    roi_extractor = SingleRoIExtractor3D(
        roi_layer_type='RoIAlign',
        featmap_stride=16,
        output_size=8,
        sampling_ratio=0,
        pool_mode='avg',
        aligned=True,
        with_temporal_pool=True,
        with_global=True)
    roi_feat, feat = roi_extractor(feat, rois)
    assert roi_feat.shape == (4, 128, 1, 8, 8)
    assert feat.shape == (4, 64, 1, 16, 16)