# Copyright (c) OpenMMLab. All rights reserved. import torch from mmaction.models import SingleRoIExtractor3D def test_single_roi_extractor3d(): roi_extractor = SingleRoIExtractor3D( roi_layer_type='RoIAlign', featmap_stride=16, output_size=8, sampling_ratio=0, pool_mode='avg', aligned=True, with_temporal_pool=True) feat = torch.randn([4, 64, 8, 16, 16]) rois = torch.tensor([[0., 1., 1., 6., 6.], [1., 2., 2., 7., 7.], [3., 2., 2., 9., 9.], [2., 2., 0., 10., 9.]]) roi_feat, feat = roi_extractor(feat, rois) assert roi_feat.shape == (4, 64, 1, 8, 8) assert feat.shape == (4, 64, 1, 16, 16) feat = (torch.randn([4, 64, 8, 16, 16]), torch.randn([4, 32, 16, 16, 16])) roi_feat, feat = roi_extractor(feat, rois) assert roi_feat.shape == (4, 96, 1, 8, 8) assert feat.shape == (4, 96, 1, 16, 16) feat = torch.randn([4, 64, 8, 16, 16]) roi_extractor = SingleRoIExtractor3D( roi_layer_type='RoIAlign', featmap_stride=16, output_size=8, sampling_ratio=0, pool_mode='avg', aligned=True, with_temporal_pool=False) roi_feat, feat = roi_extractor(feat, rois) assert roi_feat.shape == (4, 64, 8, 8, 8) assert feat.shape == (4, 64, 8, 16, 16) feat = (torch.randn([4, 64, 8, 16, 16]), torch.randn([4, 32, 16, 16, 16])) roi_feat, feat = roi_extractor(feat, rois) assert roi_feat.shape == (4, 96, 16, 8, 8) assert feat.shape == (4, 96, 16, 16, 16) feat = torch.randn([4, 64, 8, 16, 16]) roi_extractor = SingleRoIExtractor3D( roi_layer_type='RoIAlign', featmap_stride=16, output_size=8, sampling_ratio=0, pool_mode='avg', aligned=True, with_temporal_pool=True, with_global=True) roi_feat, feat = roi_extractor(feat, rois) assert roi_feat.shape == (4, 128, 1, 8, 8) assert feat.shape == (4, 64, 1, 16, 16)