"src/vscode:/vscode.git/clone" did not exist on "57e50f8db6a3d51facea9898ba346fbe77b61dca"
model.py 8.6 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright 2025 StepFun Inc. All Rights Reserved.
# 
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# ==============================================================================
from typing import Any, Dict, Optional, Union
import torch
from torch import nn
import os
from einops import rearrange, repeat
from stepvideo.modules.blocks import StepVideoTransformerBlock, PatchEmbed

from stepvideo.utils import with_empty_init
from stepvideo.parallel import parallel_forward

from stepvideo.modules.normalization import (
        PixArtAlphaTextProjection,
        AdaLayerNormSingle
    )

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin



class StepVideoModel(ModelMixin, ConfigMixin):
    _no_split_modules = ["StepVideoTransformerBlock", "PatchEmbed"]

    @with_empty_init
    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 48,
        attention_head_dim: int = 128,
        in_channels: int = 64,
        out_channels: Optional[int] = 64,
        num_layers: int = 48,
        dropout: float = 0.0,
        patch_size: int = 1,
        norm_type: str = "ada_norm_single",
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-6,
        use_additional_conditions: Optional[bool] = False,
        caption_channels: Optional[int]|list|tuple = [6144, 1024],
        attention_type: Optional[str] = "parallel",
    ):
        super().__init__()

        # Set some common variables used across the board.
        self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
        self.out_channels = in_channels if out_channels is None else out_channels

        self.use_additional_conditions = use_additional_conditions

        self.pos_embed = PatchEmbed(
            patch_size=patch_size,
            in_channels=self.config.in_channels if not use_additional_conditions else self.config.in_channels*2,
            embed_dim=self.inner_dim,
        )

        self.transformer_blocks = nn.ModuleList(
            [
                StepVideoTransformerBlock(
                    dim=self.inner_dim,
                    attention_head_dim=self.config.attention_head_dim,
                    attention_type=attention_type
                )
                for _ in range(self.config.num_layers)
            ]
        )

        # 3. Output blocks.
        self.norm_out = nn.LayerNorm(self.inner_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
        self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels)
        self.patch_size = patch_size

        self.adaln_single = AdaLayerNormSingle(
            self.inner_dim, use_additional_conditions=self.use_additional_conditions
        )

        if isinstance(self.config.caption_channels, int):
            caption_channel = self.config.caption_channels
        else:
            caption_channel, clip_channel = self.config.caption_channels
            self.clip_projection = nn.Linear(clip_channel, self.inner_dim) 

        self.caption_norm = nn.LayerNorm(caption_channel,  eps=norm_eps, elementwise_affine=norm_elementwise_affine)
        
        self.caption_projection = PixArtAlphaTextProjection(
            in_features=caption_channel, hidden_size=self.inner_dim
        )
        
        self.parallel = attention_type=='parallel'

    def patchfy(self, hidden_states, condition_hidden_states=None):
        if condition_hidden_states is not None:
            hidden_states = torch.cat([hidden_states, condition_hidden_states], dim=2)

        hidden_states = rearrange(hidden_states, 'b f c h w -> (b f) c h w')
        hidden_states = self.pos_embed(hidden_states)
        return hidden_states

    def prepare_attn_mask(self, encoder_attention_mask, encoder_hidden_states, q_seqlen):
        kv_seqlens = encoder_attention_mask.sum(dim=1).int()
        mask = torch.zeros([len(kv_seqlens), q_seqlen, max(kv_seqlens)], dtype=torch.bool, device=encoder_attention_mask.device)
        encoder_hidden_states = encoder_hidden_states[:,: max(kv_seqlens)]
        for i, kv_len in enumerate(kv_seqlens):
            mask[i, :, :kv_len] = 1
        return encoder_hidden_states, mask
        
        
    @parallel_forward
    def block_forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        timestep=None,
        rope_positions=None,
        attn_mask=None,
        parallel=True
    ):

        for i, block in enumerate(self.transformer_blocks):
            hidden_states = block(
                hidden_states,
                encoder_hidden_states,
                timestep=timestep,
                attn_mask=attn_mask,
                rope_positions=rope_positions
            )

        return hidden_states
        

    @torch.inference_mode()
    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_hidden_states_2: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Dict[str, torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        fps: torch.Tensor=None,
        condition_hidden_states: torch.Tensor = None,
        motion_score: torch.Tensor=None,
        return_dict: bool = True,
    ):
        assert hidden_states.ndim==5; "hidden_states's shape should be (bsz, f, ch, h ,w)"

        bsz, frame, _, height, width = hidden_states.shape
        height, width = height // self.patch_size, width // self.patch_size
                
        hidden_states = self.patchfy(hidden_states, condition_hidden_states) 
        len_frame = hidden_states.shape[1]
                
        if self.use_additional_conditions:
            added_cond_kwargs = {
                "motion_score": torch.tensor([motion_score], device=hidden_states.device, dtype=hidden_states.dtype).repeat(bsz),
            }    
        else:
            added_cond_kwargs = {}
        
        timestep, embedded_timestep = self.adaln_single(
            timestep, added_cond_kwargs=added_cond_kwargs
        )

        encoder_hidden_states = self.caption_projection(self.caption_norm(encoder_hidden_states))
        
        if encoder_hidden_states_2 is not None and hasattr(self, 'clip_projection'):
            clip_embedding = self.clip_projection(encoder_hidden_states_2)
            encoder_hidden_states = torch.cat([clip_embedding, encoder_hidden_states], dim=1)

        hidden_states = rearrange(hidden_states, '(b f) l d->  b (f l) d', b=bsz, f=frame, l=len_frame).contiguous()
        encoder_hidden_states, attn_mask = self.prepare_attn_mask(encoder_attention_mask, encoder_hidden_states, q_seqlen=frame*len_frame)
        
        hidden_states = self.block_forward(
            hidden_states,
            encoder_hidden_states,
            timestep=timestep,
            rope_positions=[frame, height, width],
            attn_mask=attn_mask,
            parallel=self.parallel
        )
        
        hidden_states = rearrange(hidden_states, 'b (f l) d -> (b f) l d', b=bsz, f=frame, l=len_frame)
        
        embedded_timestep = repeat(embedded_timestep, 'b d -> (b f) d', f=frame).contiguous()
        
        shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
        hidden_states = self.norm_out(hidden_states)
        # Modulation
        hidden_states = hidden_states * (1 + scale) + shift
        hidden_states = self.proj_out(hidden_states)
        
        # unpatchify
        hidden_states = hidden_states.reshape(
            shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
        )
        
        hidden_states = rearrange(hidden_states, 'n h w p q c -> n c h p w q')
        output = hidden_states.reshape(
            shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
        )

        output = rearrange(output, '(b f) c h w -> b f c h w', f=frame)

        if return_dict:
            return {'x': output}
        return output