train_sr.py 27.5 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
#!/usr/bin/env python
# coding=utf-8

import argparse
import os
from pathlib import Path

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from tqdm.auto import tqdm
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version

import torch
import torch.nn.functional as F
import torch.fft
from typing import Tuple

import sys
base_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '../../'))
sys.path.append(base_path)

from video_to_video.modules import *
from video_to_video.diffusion.diffusion_sdedit import GaussianDiffusion
from video_to_video.diffusion.schedules_sdedit import noise_schedule
from video_to_video.utils.logger import get_logger
from video_super_resolution.dataset import PairedCaptionVideoDataset

from diffusers import AutoencoderKLTemporalDecoder

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.21.0.dev0")

logger = get_logger(__name__)

def get_model_numel(model: torch.nn.Module) -> Tuple[int, int]:
    num_params = 0
    num_params_trainable = 0
    for p in model.parameters():
        num_params += p.numel()
        if p.requires_grad:
            num_params_trainable += p.numel()
    return num_params, num_params_trainable

def format_numel_str(numel: int) -> str:
    B = 1024**3
    M = 1024**2
    K = 1024
    if numel >= B:
        return f"{numel / B:.2f} B"
    elif numel >= M:
        return f"{numel / M:.2f} M"
    elif numel >= K:
        return f"{numel / K:.2f} K"
    else:
        return f"{numel}"

def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
    parser.add_argument(
        "--pretrained_model_path",
        type=str,
        default="",
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help=(
            "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
            " float32 precision."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--train_batch_size", type=int, default=1 * 8, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1000)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=50000,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-5,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="fp16",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
    parser.add_argument(
        "--set_grads_to_none",
        action="store_true",
        help=(
            "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
            " behaviors, so disable this argument if it causes any problems. More info:"
            " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
        ),
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default='NOTHING',
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--num_frames",
        type=int,
        default=32,
        help=(
            "Length of each training video"
        ),
    )
    parser.add_argument(
        "--image_column", type=str, default="image", help="The column of the dataset containing the target image."
    )
    parser.add_argument(
        "--conditioning_image_column",
        type=str,
        default="conditioning_image",
        help="The column of the dataset containing the controlnet conditioning image.",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default="text",
        help="The column of the dataset containing a caption or a list of captions.",
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        ),
    )
    parser.add_argument(
        "--proportion_empty_prompts",
        type=float,
        default=0,
        help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=[""],
        nargs="+",
        help=(
            "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
            " Provide either a matching number of `--validation_image`s, a single `--validation_image`"
            " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
        ),
    )
    parser.add_argument(
        "--validation_image",
        type=str,
        default=[""],
        nargs="+",
        help=(
            "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
            " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
            " a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
            " `--validation_image` that will be used with all `--validation_prompt`s."
        ),
    )
    parser.add_argument(
        "--tracker_project_name",
        type=str,
        default="SeeSR",
        help=(
            "The `project_name` argument passed to Accelerator.init_trackers for"
            " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
        ),
    )
    
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("Specify either `--dataset_name` or `--train_data_dir`")

    if args.dataset_name is not None and args.train_data_dir is not None:
        raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`")

    if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:
        raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")

    if args.validation_prompt is not None and args.validation_image is None:
        raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")

    if args.validation_prompt is None and args.validation_image is not None:
        raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")

    if (
        args.validation_image is not None
        and args.validation_prompt is not None
        and len(args.validation_image) != 1
        and len(args.validation_prompt) != 1
        and len(args.validation_image) != len(args.validation_prompt)
    ):
        raise ValueError(
            "Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
            " or the same number of `--validation_prompt`s and `--validation_image`s"
        )

    return args


args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
logging_dir = Path(args.output_dir, args.logging_dir)

accelerator_project_config = ProjectConfiguration(
    project_dir=args.output_dir, logging_dir=logging_dir
)

accelerator = Accelerator(
    gradient_accumulation_steps=args.gradient_accumulation_steps,
    mixed_precision=args.mixed_precision,
    log_with=args.report_to,
    project_config=accelerator_project_config,
    split_batches=True,  # It's important to set this to True when using webdataset to get the right number of steps for lr scheduling. If set to False, the number of steps will be divided by the number of processes assuming batches are multiplied by the number of processes
)


###-------------------------------------
# Bulid Model
###------------------------------------

# text_encoder
text_encoder = FrozenOpenCLIPEmbedder(pretrained="laion2b_s32b_b79k")
text_encoder.requires_grad_(False)
logger.info(f'Build text encoder with CLIP')

# U-Net with ControlNet
model = ControlledV2VUNet()
load_dict = torch.load(args.pretrained_model_path, map_location='cpu')
if 'state_dict' in load_dict:
    load_dict = load_dict['state_dict']

incompatible_keys = model.load_state_dict(load_dict, strict=False)
logger.info('Load model path {}, with local status {}'.format(args.pretrained_model_path, incompatible_keys))
model_numel, model_numel_trainable = get_model_numel(model)
logger.info(
    f"Total model params: {format_numel_str(model_numel)}"
)

# Noise scheduler
sigmas = noise_schedule(
    schedule='logsnr_cosine_interp',
    n=1000,
    zero_terminal_snr=True,
    scale_min=2.0,
    scale_max=4.0)
noise_scheduler = GaussianDiffusion(sigmas=sigmas)
logger.info('Build noise_scheduler with GaussianDiffusion')

# Temporal VAE
vae = AutoencoderKLTemporalDecoder.from_pretrained(
            "stabilityai/stable-video-diffusion-img2vid", subfolder="vae", variant="fp16"
        )
vae.eval()
vae.requires_grad_(False)
logger.info('Build Temporal VAE')

###-------------------------------------
# Bulid dataset & dataloader
###-------------------------------------
train_dataset = PairedCaptionVideoDataset(
    root_folders=[
        args.train_data_dir
    ], 
    num_frames=args.num_frames,
)

train_dataloader = torch.utils.data.DataLoader(
train_dataset,
num_workers=args.dataloader_num_workers,
batch_size=args.train_batch_size,
shuffle=False
)

# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
    torch.backends.cuda.matmul.allow_tf32 = True

if args.scale_lr:
    args.learning_rate = (
        args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
    )

###-------------------------------------
# Optimizer creation & lr_scheduler
###-------------------------------------
if args.use_8bit_adam:
    try:
        import bitsandbytes as bnb
    except ImportError:
        raise ImportError(
            "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
        )

    optimizer_class = bnb.optim.AdamW8bit
else:
    optimizer_class = torch.optim.AdamW

print(f'=================Optimize ControlNet ======================')

# For training VideoControlNet

params_to_optimize = set()

params_to_optimize.update(model.VideoControlNet.parameters())

for name, param in model.named_parameters():
    if 'local' in name:
        print(f'{name} will be optimized')
        params_to_optimize.add(param)

params_to_optimize = list(params_to_optimize)

# Calculate the total number of parameters
total_params = sum(param.numel() for param in params_to_optimize)
total_params_million = total_params / 1_000_000
print(f"Total number of trainable parameters to optimize: {total_params_million:.2f} million")


print(f'start to load optimizer...')

optimizer = optimizer_class(
    params_to_optimize,
    lr=args.learning_rate,
    betas=(args.adam_beta1, args.adam_beta2),
    weight_decay=args.adam_weight_decay,
    eps=args.adam_epsilon,
)

# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
    args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    overrode_max_train_steps = True

lr_scheduler = get_scheduler(
    args.lr_scheduler,
    optimizer=optimizer,
    num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
    num_training_steps=args.max_train_steps * accelerator.num_processes,
    num_cycles=args.lr_num_cycles,
    power=args.lr_power,
)

# Prepare everything with `accelerator`.
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
    model, optimizer, train_dataloader, lr_scheduler
)

# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
    weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
    weight_dtype = torch.bfloat16

# Move vae and text_encoder to device and cast to weight_dtype
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)

def tensor2latent(t, vae):
    video_length = t.shape[2]
    t = rearrange(t, "b c f h w -> (b f) c h w")
    chunk_size = 1
    latents_list = []
    for ind in range(0,t.shape[0],chunk_size):
        latents_list.append(vae.encode(t[ind:ind+chunk_size]).latent_dist.sample())
    latents = torch.cat(latents_list, dim=0)
    latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
    latents = latents * vae.config.scaling_factor
    return latents

def temporal_vae_decode(z, num_f):
    return vae.decode(z/vae.config.scaling_factor, num_frames=num_f).sample

def vae_decode_chunk(z, chunk_size=3):
    z = rearrange(z, "b c f h w -> (b f) c h w")
    video = []
    for ind in range(0, z.shape[0], chunk_size):
        num_f = z[ind:ind+chunk_size].shape[0]
        video.append(temporal_vae_decode(z[ind:ind+chunk_size],num_f))
    video = torch.cat(video)
    return video


def fourier_transform(x, balance=None):
    """
    Apply Fourier transform to the input tensor and separate it into low-frequency and high-frequency components.

    Args:
    x (torch.Tensor): Input tensor of shape [batch_size, channels, height, width]
    balance (torch.Tensor or float, optional): Learnable balance parameter for adjusting the cutoff frequency.

    Returns:
    low_freq (torch.Tensor): Low-frequency components (with real and imaginary parts)
    high_freq (torch.Tensor): High-frequency components (with real and imaginary parts)
    """
    # Perform 2D Real Fourier transform (rfft2 only computes positive frequencies)
    x = x.to(torch.float32)
    fft_x = torch.fft.rfft2(x, dim=(-2, -1))
    
    # Calculate magnitude of frequency components
    magnitude = torch.abs(fft_x)

    # Set cutoff based on balance or default to the 80th percentile of the magnitude for low frequency
    if balance is None:
        # Downsample the magnitude to reduce computation for large tensors
        subsample_size = 10000  # Adjust based on available memory and tensor size
        if magnitude.numel() > subsample_size:
            # Randomly select a subset of values to approximate the quantile
            magnitude_sample = magnitude.flatten()[torch.randint(0, magnitude.numel(), (subsample_size,))]
            cutoff = torch.quantile(magnitude_sample, 0.8)  # 80th percentile for low frequency
        else:
            cutoff = torch.quantile(magnitude, 0.8)  # 80th percentile for low frequency
    else:
        # balance is clamped for safety and used to scale the mean-based cutoff
        cutoff = magnitude.mean() * (1 + 10 * balance)

    # Smooth mask using sigmoid to ensure gradients can pass through
    sharpness = 10  # A parameter to control the sharpness of the transition
    low_freq_mask = torch.sigmoid(sharpness * (cutoff - magnitude))
    
    # High-frequency mask can be derived from low-frequency mask (1 - low_freq_mask)
    high_freq_mask = 1 - low_freq_mask
    
    # Separate low and high frequencies using smooth masks
    low_freq = fft_x * low_freq_mask
    high_freq = fft_x * high_freq_mask

    # Return real and imaginary parts separately
    low_freq = torch.stack([low_freq.real, low_freq.imag], dim=-1)
    high_freq = torch.stack([high_freq.real, high_freq.imag], dim=-1)
    
    return low_freq, high_freq


def extract_frequencies(video: torch.Tensor, balance=None):
    """
    Extract high-frequency and low-frequency components of a video using Fourier transform.

    Args:
    video (torch.Tensor): Input video tensor of shape [batch_size, channels, frames, height, width]

    Returns:
    low_freq (torch.Tensor): Low-frequency components of the video
    high_freq (torch.Tensor): High-frequency components of the video
    """
    # batch_size, channels, frames, _, _ = video.shape
    video = rearrange(video, 'b c t h w -> (b t) c h w')  # Reshape for Fourier transform

    # Apply Fourier transform to each frame
    low_freq, high_freq = fourier_transform(video, balance=balance)

    return low_freq, high_freq

###-------------------------------------
# Train
###-------------------------------------
progress_bar = tqdm(
    range(0, args.max_train_steps),
    initial=0,
    desc="Steps",
    # Only show the progress bar once on each machine.
    disable=not accelerator.is_local_main_process,
)
global_step = 0

for epoch in range(0, args.num_train_epochs):
    for step, batch in enumerate(train_dataloader):
        torch.cuda.empty_cache()
        with accelerator.accumulate(model):
            video_data = batch.pop('gt').to(accelerator.device, dtype=weight_dtype) # [b, c, t, h, w]
            lq = batch.pop('lq').to(accelerator.device, dtype=weight_dtype)
            text = batch.pop('text')

            with torch.no_grad():
                # Process hq & lq video
                video_data_feature = tensor2latent(video_data, vae)
                lq_feature = tensor2latent(lq, vae)

                # Process text
                model_kwargs = {}
                model_kwargs['y'] = text_encoder(text).detach()

            # Diffusion process
            bsz = video_data_feature.shape[0]
            timesteps = torch.randint(0, 1000, (bsz,), device=video_data_feature.device)
            timesteps = timesteps.long()
            noise = torch.randn_like(video_data_feature)
            noised_video = noise_scheduler.diffuse(video_data_feature, timesteps, noise=noise)
            
            # == video meta info ==
            for k, v in batch.items():
                if isinstance(v, torch.Tensor):
                    model_kwargs[k] = v.to(accelerator.device, weight_dtype)
            
            model_kwargs['hint'] = lq_feature

            # Predict the velocity
            out = model(noised_video, timesteps, **model_kwargs)
            target = noise_scheduler.get_velocity(x0=video_data_feature, xt=noised_video, t=timesteps)
            
            # get the low-freq & high-freq from x0
            pred_x0 = noise_scheduler.get_x0(v=out, xt=noised_video, t=timesteps).to(accelerator.device, weight_dtype)
            # Learning the cutoff frequency
            with torch.no_grad():
                pred_x0 = vae_decode_chunk(pred_x0, chunk_size=3).permute(1, 0, 2, 3).unsqueeze(0)
            low_freq_pred_x0, high_freq_pred_x0 = extract_frequencies(pred_x0)
            low_freq_x0, high_freq_x0 = extract_frequencies(video_data)

            # v-prediction loss
            loss_v = F.mse_loss(out.float(), target.float(), reduction="mean")

            # timestep-aware loss
            alpha = 2
            ct = (timesteps/999) ** alpha
            loss_low = F.l1_loss(low_freq_pred_x0.float(), low_freq_x0.float(), reduction="mean")
            loss_high = F.l1_loss(high_freq_pred_x0.float(), high_freq_x0.float(), reduction="mean")
            loss_t = 0.01*(ct * loss_low + (1 - ct) * loss_high)

            # Calculate the loss & Backword
            beta = 1
            weight_t = 1 - timesteps/999
            loss = loss_v + beta * weight_t * loss_t
            accelerator.backward(loss)
            if accelerator.sync_gradients:
                params_to_clip = list(model.module.VideoControlNet.parameters())
                accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
            optimizer.step()
            lr_scheduler.step()
            model.zero_grad()

            # Save weights
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
            

            logs = {"loss_high": loss_high.detach().item(), "loss_low": loss_low.detach().item(), "loss_v": loss_v.detach().item(), "total_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

accelerator.end_training()