datasets_webvid10m.py 6.51 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import csv
import os

import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets.folder import IMG_EXTENSIONS, pil_loader

from . import video_transforms
from .utils import center_crop_arr
# import video_transforms
# from utils import center_crop_arr

import json
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import ipdb

def get_transforms_video(resolution=256):
    transform_video = transforms.Compose(
        [
            video_transforms.ToTensorVideo(),  # TCHW
            video_transforms.RandomHorizontalFlipVideo(),
            video_transforms.UCFCenterCropVideo(resolution),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
        ]
    )
    return transform_video


def get_transforms_image(image_size=256):
    transform = transforms.Compose(
        [
            transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, image_size)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
        ]
    )
    return transform


class DatasetFromCSV(torch.utils.data.Dataset):
    """load video according to the csv file.

    Args:
        target_video_len (int): the number of video frames will be load.
        align_transform (callable): Align different videos in a specified size.
        temporal_sample (callable): Sample the target length of a video.
    """

    def __init__(
        self,
        csv_path,
        num_frames=16,
        frame_interval=1,
        transform=None,
        root=None,
    ):
        self.csv_path = csv_path
        with open(csv_path, "r") as f:
            reader = csv.reader(f)
            csv_list = list(reader)
        all_samples = csv_list[1:] #no head, 10727607
        
        sample_samples = []
        for i_s, sample in enumerate(all_samples):
            if sample[2] != '0':
                sample_samples.append(sample)
        print('samples num:', len(sample_samples))
        self.samples = sample_samples  # 10727337
        
        self.is_video = True
        self.transform = transform

        self.num_frames = num_frames
        self.frame_interval = frame_interval
        self.temporal_sample = video_transforms.TemporalRandomCrop(num_frames * frame_interval)
        self.root = root

    def getitem(self, index):
        sample = self.samples[index]
        path = sample[0]
        if self.root:
            path = os.path.join(self.root, path)
        text = sample[-1]
        #path = "/mnt/bn/yh-volume0/dataset/webvid/raw/videos/train/videos_new/013501_013550-33142969.mp4"

        if self.is_video:


            # old
            # vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW")
            # total_frames = len(vframes)

            # # Sampling video frames
            # start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
            # assert (
            #     end_frame_ind - start_frame_ind >= self.num_frames
            # ), f"{path} with index {index} has not enough frames."
            # frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.num_frames, dtype=int)

            # video = vframes[frame_indice]
            # video = self.transform(video)  # T C H W


            # new
            is_exit = os.path.exists(path)
            if is_exit:
                vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW")
                total_frames = len(vframes)
            else:
                total_frames = 0
            
            loop_index = index
            while(total_frames < self.num_frames or is_exit == False):
                #print("total_frames:", total_frames, "<", self.num_frames, ", or", path, "does not exit!!!")
                loop_index += 1
                if loop_index >= len(self.samples):
                    loop_index = 0
                sample = self.samples[loop_index]
                path = sample[0]
                if self.root:
                    path = os.path.join(self.root, path)
                text = sample[-1]

                is_exit = os.path.exists(path)
                if is_exit:
                    vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW")
                    total_frames = len(vframes)
                else:
                    total_frames = 0
            #  video exits and total_frames >= self.num_frames
            
            # Sampling video frames
            start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
            assert (
                end_frame_ind - start_frame_ind >= self.num_frames
            ), f"{path} with index {index} has not enough frames."
            frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.num_frames, dtype=int)
            
            #print("total_frames:", total_frames, "frame_indice:", frame_indice, "sample:", sample)
            video = vframes[frame_indice]
            video = self.transform(video)  # T C H W
        else:
            image = pil_loader(path)
            image = self.transform(image)
            video = image.unsqueeze(0).repeat(self.num_frames, 1, 1, 1)

        # TCHW -> CTHW
        video = video.permute(1, 0, 2, 3)
        #print('video shape:', video.shape,'text:', text, 'video path:', path)

        return {"video": video, "text": text}

    def __getitem__(self, index):
        for _ in range(10):
            try:
                return self.getitem(index)
            except Exception as e:
                print(e)
                index = np.random.randint(len(self))
        raise RuntimeError("Too many bad data.")

    def __len__(self):
        return len(self.samples)


if __name__ == '__main__':
    data_path = '/mnt/bn/yh-volume0/dataset/webvid/raw/webvid_csv/train.csv'
    root='/mnt/bn/yh-volume0/dataset/webvid/raw/videos/train/videos_new'
    dataset = DatasetFromCSV(
        data_path,
        transform=get_transforms_video(),
        num_frames=16,
        frame_interval=3,
        root=root,
    )
    sampler = DistributedSampler(
    dataset,
    num_replicas=1,
    rank=0,
    shuffle=True,
    seed=1
    )
    loader = DataLoader(
        dataset,
        batch_size=1,
        shuffle=False,
        sampler=sampler,
        num_workers=0,
        pin_memory=True,
        drop_last=True
    )
    for video_data in loader:
        print(video_data)