transformer.py 35.8 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
# coding=utf-8
# rewritten, Copyright (c) 2021, Ming Ding.  All rights reserved.
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""

import math
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F

from sat import mpu
from sat.mpu import get_model_parallel_world_size, ColumnParallelLinear, RowParallelLinear, VocabParallelEmbedding, gather_from_model_parallel_region, copy_to_model_parallel_region, checkpoint


from sat.mpu.utils import divide, sqrt, scaled_init_method, unscaled_init_method, gelu
from sat.ops.layernorm import LayerNorm

from sat.transformer_defaults import HOOKS_DEFAULT, standard_attention, split_tensor_along_last_dim


class SelfAttention(torch.nn.Module):
    def __init__(self, hidden_size, num_attention_heads,
                 attention_dropout_prob, output_dropout_prob,
                 init_method, layer_id, hidden_size_per_attention_head=None, output_layer_init_method=None, bias=True, qkv_bias=False, num_multi_query_heads=0, row_parallel_linear_final_bias=True,
                 hooks={}, transformer_pointer=None, params_dtype=torch.float, skip_init=False, device=torch.device('cpu')):
        super(SelfAttention, self).__init__()
        # Set output layer initialization if not provided.
        if output_layer_init_method is None:
            output_layer_init_method = init_method
        self.hooks = hooks
        self.layer_id = layer_id
        # Per attention head and per partition values.
        world_size = get_model_parallel_world_size()
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.num_multi_query_heads = num_multi_query_heads
        if hidden_size_per_attention_head is None:
            self.hidden_size_per_attention_head = divide(hidden_size, num_attention_heads)
        else:
            self.hidden_size_per_attention_head = hidden_size_per_attention_head
        self.num_attention_heads_per_partition = divide(num_attention_heads, world_size)
        self.num_multi_query_heads_per_partition = divide(num_multi_query_heads, world_size)
        self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
        self.hidden_size_per_partition = self.hidden_size_per_attention_head * self.num_attention_heads_per_partition

        # Strided linear layer.
        if num_multi_query_heads == 0:
            qkv_size = 3 * self.inner_hidden_size
            self.stride = 3
        else: # multi-query 
            qkv_size = self.inner_hidden_size + self.hidden_size_per_attention_head * self.num_multi_query_heads * 2 
            self.stride = [self.num_attention_heads_per_partition, self.num_multi_query_heads_per_partition, self.num_multi_query_heads_per_partition]
        self.query_key_value = ColumnParallelLinear(
            hidden_size,
            qkv_size,
            stride=self.stride,
            gather_output=False,
            init_method=init_method,
            bias=bias or qkv_bias,
            params_dtype=params_dtype,
            module=self,
            name="query_key_value",
            skip_init=skip_init,
            device=device
        )
        self.attention_dropout = torch.nn.Dropout(attention_dropout_prob)

        self.dense = RowParallelLinear(
            self.inner_hidden_size,
            hidden_size,
            input_is_parallel=True,
            init_method=output_layer_init_method,
            bias=bias,
            params_dtype=params_dtype,
            module=self,
            name="dense",
            skip_init=skip_init,
            device=device,
            final_bias=row_parallel_linear_final_bias
        )
        self.output_dropout = torch.nn.Dropout(output_dropout_prob)
        
        object.__setattr__(self, 'transformer', transformer_pointer)
        assert transformer_pointer is not None

    def _transpose_for_scores(self, tensor):
        """Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with
        size [b, np, s, hn].
        """
        new_tensor_shape = tensor.size()[:-1] + \
                           (-1, # flexible for multi-query
                            self.hidden_size_per_attention_head)
        tensor = tensor.view(*new_tensor_shape)
        return tensor.permute(0, 2, 1, 3)

    def forward(self, hidden_states, mask, *args, **kw_args):
        if 'attention_forward' in self.hooks:
            return self.hooks['attention_forward'](hidden_states, mask, **kw_args)
        else:
            return HOOKS_DEFAULT['attention_forward'](self, hidden_states, mask, **kw_args)

    def repartition(self):
        world_size = get_model_parallel_world_size()
        self.num_attention_heads_per_partition = divide(self.num_attention_heads, world_size)
        self.hidden_size_per_partition = self.hidden_size_per_attention_head * self.num_attention_heads_per_partition

class CrossAttention(torch.nn.Module):
    """Parallel cross-attention layer for Transformer"""

    def __init__(self, hidden_size, num_attention_heads, attention_dropout_prob, output_dropout_prob, init_method,
                 layer_id, hidden_size_per_attention_head=None, output_layer_init_method=None, bias=True, cross_num_multi_query_heads=0, row_parallel_linear_final_bias=True, hooks={},
                 cross_attn_hidden_size=None, transformer_pointer=None, params_dtype=torch.float, skip_init=False, device=torch.device('cpu')):
        super().__init__()
        # Set output layer initialization if not provided.
        if output_layer_init_method is None:
            output_layer_init_method = init_method
        self.hooks = hooks
        self.layer_id = layer_id
        self.num_attention_heads = num_attention_heads
        self.hidden_size = hidden_size
        # Per attention head and per partition values.
        world_size = get_model_parallel_world_size()
        if hidden_size_per_attention_head is None:
            self.hidden_size_per_attention_head = divide(hidden_size, num_attention_heads)
        else:
            self.hidden_size_per_attention_head = hidden_size_per_attention_head
        self.num_attention_heads_per_partition = divide(num_attention_heads, world_size)
        self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
        self.hidden_size_per_partition = self.hidden_size_per_attention_head * self.num_attention_heads_per_partition
        self.cross_num_multi_query_heads = cross_num_multi_query_heads
        # Strided linear layer.
        if cross_num_multi_query_heads == 0:
            kv_size = 2 * self.inner_hidden_size
        else: # multi-query 
            kv_size = self.hidden_size_per_attention_head * self.cross_num_multi_query_heads * 2
        
        self.query = ColumnParallelLinear(hidden_size, self.inner_hidden_size,
                                          gather_output=False,
                                          init_method=init_method, bias=bias, params_dtype=params_dtype, module=self, name="query", skip_init=skip_init, device=device)
        if cross_attn_hidden_size is None:
            cross_attn_hidden_size = hidden_size
        self.cross_attn_hidden_size = cross_attn_hidden_size
        self.key_value = ColumnParallelLinear(cross_attn_hidden_size, kv_size,
                                              stride=2,
                                              gather_output=False,
                                              init_method=init_method, bias=bias, params_dtype=params_dtype, module=self, name="key_value",
                                              skip_init=skip_init, device=device)
        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(attention_dropout_prob)

        # Output.
        self.dense = RowParallelLinear(
            self.inner_hidden_size,
            hidden_size,
            input_is_parallel=True,
            init_method=output_layer_init_method, bias=bias, params_dtype=params_dtype, module=self, name="dense",skip_init=skip_init,
            device=device, final_bias=row_parallel_linear_final_bias)
        self.output_dropout = torch.nn.Dropout(output_dropout_prob)

        object.__setattr__(self, 'transformer', transformer_pointer)
        assert transformer_pointer is not None

    def _transpose_for_scores(self, tensor):
        """Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with
        size [b, np, s, hn].
        """
        new_tensor_shape = tensor.size()[:-1] + \
                           (-1, # flexible for multi-query
                            self.hidden_size_per_attention_head)
        tensor = tensor.view(*new_tensor_shape)
        return tensor.permute(0, 2, 1, 3)

    def forward(self, hidden_states, cross_attention_mask, encoder_outputs, **kw_args):
        # hidden_states: [b, s, h]
        if 'cross_attention_forward' in self.hooks:
            return self.hooks['cross_attention_forward'](hidden_states, cross_attention_mask, encoder_outputs, **kw_args)
        else:
            return HOOKS_DEFAULT['cross_attention_forward'](self, hidden_states, cross_attention_mask, encoder_outputs, **kw_args)
    
    def repartition(self):
        world_size = get_model_parallel_world_size()
        self.num_attention_heads_per_partition = divide(self.num_attention_heads, world_size)
        self.hidden_size_per_partition = self.hidden_size_per_attention_head * self.num_attention_heads_per_partition
    

class MLP(torch.nn.Module):
    def __init__(self, hidden_size, output_dropout_prob, init_method, inner_hidden_size=None,
                 output_layer_init_method=None, layer_id=None, row_parallel_linear_final_bias=True, hooks={}, bias=True, activation_func=gelu, transformer_pointer=None, is_gated_mlp=False, num_experts=1,
                 params_dtype=torch.float, skip_init=False, device=torch.device('cpu')):
        super(MLP, self).__init__()
        self.layer_id = layer_id
        self.activation_func = activation_func
        # Set output layer initialization if not provided.
        if output_layer_init_method is None:
            output_layer_init_method = init_method
        self.hooks = hooks
        # Project to 4h.
        self.hidden_size = hidden_size
        if inner_hidden_size is None:
            inner_hidden_size = 4 * hidden_size
        self.inner_hidden_size = inner_hidden_size
        self.dense_h_to_4h = ColumnParallelLinear(
            self.hidden_size,
            self.inner_hidden_size,
            gather_output=False,
            init_method=init_method,
            bias=bias,
            params_dtype=params_dtype,
            module=self,
            name="dense_h_to_4h",
            skip_init=skip_init,
            device=device
        )
        # Project back to h.
        self.dense_4h_to_h = RowParallelLinear(
            self.inner_hidden_size,
            self.hidden_size,
            input_is_parallel=True,
            init_method=output_layer_init_method,
            bias=bias,
            params_dtype=params_dtype,
            module=self,
            name="dense_4h_to_h",
            skip_init=skip_init,
            device=device,
            final_bias=row_parallel_linear_final_bias
        )
        self.is_gated_mlp = is_gated_mlp
        if is_gated_mlp:
            self.dense_h_to_4h_gate = ColumnParallelLinear(
            self.hidden_size,
            self.inner_hidden_size,
            gather_output=False,
            init_method=init_method,
            bias=False,
            params_dtype=params_dtype,
            module=self,
            name="dense_h_to_4h_gate",
            skip_init=skip_init,
            device=device
        )
        self.num_experts = num_experts
        for i in range(1, num_experts):
            self.register_module(f"dense_h_to_4h_{i}", ColumnParallelLinear(
                self.hidden_size,
                self.inner_hidden_size,
                gather_output=False,
                init_method=init_method,
                bias=bias,
                params_dtype=params_dtype,
                module=self,
                name=f"dense_h_to_4h_{i}",
                skip_init=skip_init,
                device=device
            ))
            # Project back to h.
            self.register_module(f"dense_4h_to_h_{i}", RowParallelLinear(
                self.inner_hidden_size,
                self.hidden_size,
                input_is_parallel=True,
                init_method=output_layer_init_method,
                bias=bias,
                params_dtype=params_dtype,
                module=self,
                name=f"dense_4h_to_h_{i}",
                skip_init=skip_init,
                device=device,
                final_bias=row_parallel_linear_final_bias
            ))
            if is_gated_mlp:
                self.register_module(f"dense_h_to_4h_gate_{i}", ColumnParallelLinear(
                self.hidden_size,
                self.inner_hidden_size,
                gather_output=False,
                init_method=init_method,
                bias=False,
                params_dtype=params_dtype,
                module=self,
                name=f"dense_h_to_4h_gate_{i}",
                skip_init=skip_init,
                device=device
            ))
        self.dropout = torch.nn.Dropout(output_dropout_prob)
        object.__setattr__(self, 'transformer', transformer_pointer)
        assert transformer_pointer is not None
        

    def forward(self, hidden_states, **kw_args):
        if 'mlp_forward' in self.hooks:
            output = self.hooks['mlp_forward'](hidden_states, **kw_args)
        else:
            output = HOOKS_DEFAULT['mlp_forward'](self, hidden_states, **kw_args)

        if self.training:
            output = self.dropout(output)
        return output


# Spatial LIEM
class SpatialAttention(nn.Module):  # b c h w
    def __init__(self):
        super(SpatialAttention, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, padding=7 // 2, bias=False)
        self.sigmoid = nn.Sigmoid()
    def forward(self, x):

        max_out, _ = torch.max(x, dim=1, keepdim=True)
        avg_out = torch.mean(x, dim=1, keepdim=True)

        weight = torch.cat([max_out, avg_out], dim=1)
        weight = self.conv1(weight)

        out = self.sigmoid(weight) * x
        return out

# Temporal LIEM
class TemporalLocalAttention(nn.Module):  # b t c
    def __init__(self):
        super(TemporalLocalAttention, self).__init__()
        self.conv1 = nn.Linear(in_features=2, out_features=1, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):

        max_out, _ = torch.max(x, dim=-1, keepdim=True)
        avg_out = torch.mean(x, dim=-1, keepdim=True)

        weight = torch.cat([max_out, avg_out], dim=-1)
        weight = self.conv1(weight)

        out = self.sigmoid(weight) * x
        return out

# Spatial-Temporal LIEM
class LocalAttention(nn.Module):  # b c t h w
    def __init__(self):
        super(LocalAttention, self).__init__()
        self.conv1 = nn.Conv3d(in_channels=2, out_channels=1, kernel_size=7, padding=7//2, bias=False)
        self.sigmoid = nn.Sigmoid()
    def forward(self, x):

        max_out, _ = torch.max(x, dim=1, keepdim=True)
        avg_out = torch.mean(x, dim=1, keepdim=True)

        weight = torch.cat([max_out, avg_out], dim=1)
        weight = self.conv1(weight)

        out = self.sigmoid(weight) * x
        return out


class BaseTransformerLayer(torch.nn.Module):
    def __init__(
            self,
            hidden_size,
            num_attention_heads,
            attention_dropout_prob,
            output_dropout_prob,
            layernorm_epsilon,
            init_method,
            layer_id,
            inner_hidden_size=None,
            hidden_size_per_attention_head=None,
            cross_hidden_size_per_attention_head=None,
            output_layer_init_method=None,
            layernorm_order='pre',
            layernorm=LayerNorm,
            is_decoder=False,
            cross_attn_hidden_size=None,
            use_bias=True,
            use_qkv_bias=False,
            num_multi_query_heads=0,
            cross_num_multi_query_heads=0,
            row_parallel_linear_final_bias=True,
            drop_path=0,
            activation_func=gelu,
            is_gated_mlp=False,
            num_experts=1,
            hooks={},
            transformer_pointer=None,
            params_dtype=torch.float,
            skip_init=False,
            device=torch.device('cpu')
    ):
        super(BaseTransformerLayer, self).__init__()
        # Set output layer initialization if not provided.
        if output_layer_init_method is None:
            output_layer_init_method = init_method
        self.layer_id = layer_id
        self.is_decoder = is_decoder[layer_id] if type(is_decoder) is list else is_decoder
        self.layernorm_order = layernorm_order
        self.drop_path = drop_path
        self.hooks = hooks
        object.__setattr__(self, 'transformer', transformer_pointer)
        assert transformer_pointer is not None

        # Layernorm on the input data.
        self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)

        # Self attention.
        self.attention = SelfAttention(
            hidden_size,
            num_attention_heads,
            attention_dropout_prob,
            output_dropout_prob,
            init_method,
            layer_id,
            hidden_size_per_attention_head=hidden_size_per_attention_head,
            output_layer_init_method=output_layer_init_method,
            bias=use_bias,
            qkv_bias=use_qkv_bias,
            num_multi_query_heads=num_multi_query_heads,
            row_parallel_linear_final_bias=row_parallel_linear_final_bias,
            hooks=hooks,
            transformer_pointer=transformer_pointer,
            params_dtype=params_dtype,
            skip_init=skip_init,
            device=device
        )

        # Layernorm on the input data.
        self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
        if self.layernorm_order == 'sandwich':
            self.third_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
            self.fourth_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)

        # Cross attention.
        if self.is_decoder:
            self.cross_attention = CrossAttention(
                hidden_size,
                num_attention_heads,
                attention_dropout_prob,
                output_dropout_prob,
                init_method,
                layer_id,
                hidden_size_per_attention_head=cross_hidden_size_per_attention_head,
                output_layer_init_method=output_layer_init_method,
                cross_attn_hidden_size=cross_attn_hidden_size,
                bias=use_bias,
                cross_num_multi_query_heads=cross_num_multi_query_heads,
                row_parallel_linear_final_bias=row_parallel_linear_final_bias,
                hooks=hooks,
                transformer_pointer=transformer_pointer,
                params_dtype=params_dtype
            )
            self.post_cross_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)

        # MLP
        self.mlp = MLP(
            hidden_size,
            output_dropout_prob,
            init_method,
            inner_hidden_size=inner_hidden_size,
            output_layer_init_method=output_layer_init_method,
            bias=use_bias,
            layer_id=layer_id,
            activation_func=activation_func,
            row_parallel_linear_final_bias=row_parallel_linear_final_bias,
            hooks=hooks,
            transformer_pointer=transformer_pointer,
            is_gated_mlp=is_gated_mlp,
            num_experts=num_experts,
            params_dtype=params_dtype,
            skip_init=skip_init,
            device=device
        )

        # Spatial & Temporal LIEM
        self.spa_local = SpatialAttention()
        self.temp_local = TemporalLocalAttention()
        # self.liem = LocalAttention()

    def forward(self, hidden_states, mask, *args, **kw_args):
        return HOOKS_DEFAULT['layer_forward'](self, hidden_states, mask, *args, **kw_args)


class BaseTransformer(torch.nn.Module):
    def __init__(self,
                 num_layers,
                 vocab_size,
                 hidden_size,
                 num_attention_heads,
                 max_sequence_length,
                 embedding_dropout_prob=0,
                 attention_dropout_prob=0,
                 output_dropout_prob=0,
                 drop_path=0,
                 checkpoint_activations=False,
                 checkpoint_num_layers=1,
                 checkpoint_skip_layers=0,
                 layernorm_epsilon=1.0e-5,
                 init_method_std=0.02,
                 inner_hidden_size=None,
                 hidden_size_per_attention_head=None,
                 cross_hidden_size_per_attention_head=None,
                 layernorm_order='pre',
                 parallel_output=False,
                 is_decoder=False,
                 cross_attn_hidden_size=None,
                 use_bias=True,
                 use_qkv_bias=False,
                 num_multi_query_heads=0,
                 cross_num_multi_query_heads=0,
                 row_parallel_linear_final_bias=True,
                 activation_func=gelu,
                 is_gated_mlp=False,
                 is_rotary_emb=False,
                 num_experts=1,
                 layernorm=LayerNorm,
                 init_method=None,
                 use_final_layernorm=True,
                 hooks={},
                 params_dtype=torch.float,
                 skip_init=False,
                 device=torch.device('cpu')
                 ):
        super(BaseTransformer, self).__init__()

        # recording parameters
        self.hidden_size = hidden_size
        self.inner_hidden_size = inner_hidden_size
        self.hidden_size_per_attention_head = hidden_size_per_attention_head
        self.cross_hidden_size_per_attention_head = cross_hidden_size_per_attention_head
        self.is_decoder = is_decoder
        self.cross_attn_hidden_size = cross_attn_hidden_size
        self.cross_num_multi_query_heads = cross_num_multi_query_heads
        if not is_decoder and cross_attn_hidden_size is not None:
            print('warning: cross_attn_hidden_size is set but is_decoder is False')
        self.use_bias = use_bias
        self.use_qkv_bias = use_qkv_bias
        self.num_multi_query_heads = num_multi_query_heads
        self.is_gated_mlp = is_gated_mlp
        self.is_rotary_emb = is_rotary_emb
        self.num_experts = num_experts
        self.use_final_layernorm = use_final_layernorm
        self.layernorm_epsilon = layernorm_epsilon
        self.parallel_output = parallel_output
        self.checkpoint_activations = checkpoint_activations
        self.checkpoint_num_layers = checkpoint_num_layers
        self.checkpoint_skip_layers = checkpoint_skip_layers
        assert checkpoint_skip_layers <= num_layers - checkpoint_num_layers, f'checkpoint_skip_layers too large. Please consider remove checkpoint_activations.'
        self.max_sequence_length = max_sequence_length
        self.layernorm_order = layernorm_order
        self.row_parallel_linear_final_bias = row_parallel_linear_final_bias
        self.hooks = copy.copy(hooks)  # hooks will be updated each forward
        object.__setattr__(self, 'transformer', self) # to give the default hooks the same api as outer hooks

        # create embedding parameters
        self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)

        if vocab_size < 1000:
            self.word_embeddings = torch.nn.Embedding(vocab_size, hidden_size, dtype=params_dtype, device=device)
            torch.nn.init.normal_(self.word_embeddings.weight, mean=0.0, std=init_method_std)
        else:
            self.word_embeddings = VocabParallelEmbedding(
                num_embeddings=vocab_size, embedding_dim=hidden_size, 
                params_dtype=params_dtype, skip_init=skip_init, device=device)

        if self.is_rotary_emb:
            from sat.model.position_embedding.triton_rotary_embeddings import FastRotaryEmbedding
            self.position_embeddings = FastRotaryEmbedding(hidden_size // num_attention_heads)
        else:
            self.position_embeddings = torch.nn.Embedding(max_sequence_length, hidden_size)
            torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)

        # create all layers
        if init_method is None:
            self.output_layer_init_method = scaled_init_method(init_method_std, num_layers)
            self.init_method = unscaled_init_method(init_method_std)
        else:
            self.output_layer_init_method = init_method
            self.init_method = init_method

        def get_layer(layer_id):
            return BaseTransformerLayer(
                hidden_size,
                num_attention_heads,
                attention_dropout_prob,
                output_dropout_prob,
                layernorm_epsilon,
                self.init_method,
                layer_id,
                inner_hidden_size=inner_hidden_size,
                hidden_size_per_attention_head=hidden_size_per_attention_head,
                cross_hidden_size_per_attention_head=cross_hidden_size_per_attention_head,
                output_layer_init_method=self.output_layer_init_method,
                is_decoder=self.is_decoder,
                cross_attn_hidden_size=cross_attn_hidden_size,
                layernorm_order=layernorm_order,
                layernorm=layernorm,
                use_bias=use_bias,
                use_qkv_bias=use_qkv_bias,
                num_multi_query_heads=num_multi_query_heads,
                cross_num_multi_query_heads=cross_num_multi_query_heads,
                row_parallel_linear_final_bias=row_parallel_linear_final_bias,
                drop_path=drop_path,
                activation_func=activation_func,
                is_gated_mlp=is_gated_mlp,
                num_experts=num_experts,
                hooks=self.hooks,
                transformer_pointer=self,
                params_dtype=params_dtype,
                skip_init=skip_init,
                device=device
            )

        self.layers = torch.nn.ModuleList(
            [get_layer(layer_id) for layer_id in range(num_layers)])

        # Final layer norm before output.
        if use_final_layernorm:
            self.final_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)

    def forward(self, input_ids, position_ids, attention_mask, *,
                output_hidden_states=False, **kw_args):
        # sanity check
        assert len(input_ids.shape) >= 2
        batch_size, query_length = input_ids.shape[:2]

        if attention_mask is None:
            # Definition: None means full attention
            attention_mask = torch.ones(1, 1, device=input_ids.device)
        elif isinstance(attention_mask, int) and (attention_mask < 0):
            # Definition: -1 means lower triangular attention mask
            attention_mask = torch.ones(query_length, query_length, 
                                        device=input_ids.device).tril()
            
        attention_mask = attention_mask.type_as(
                next(self.parameters())
            )
        assert len(attention_mask.shape) == 2 or \
               len(attention_mask.shape) == 4 and attention_mask.shape[1] == 1

        # initial output_cross_layer might be generated by word/position_embedding_forward
        output_cross_layer = {}

        # embedding part
        if 'word_embedding_forward' in self.hooks:
            hidden_states = self.hooks['word_embedding_forward'](input_ids, output_cross_layer=output_cross_layer, **kw_args)
        else:  # default
            hidden_states = HOOKS_DEFAULT['word_embedding_forward'](self, input_ids, output_cross_layer=output_cross_layer,**kw_args)

        # handle position embedding
        if 'position_embedding_forward' in self.hooks:
            position_embeddings = self.hooks['position_embedding_forward'](position_ids, output_cross_layer=output_cross_layer, **kw_args)
        else:
            assert len(position_ids.shape) <= 2
            assert position_ids.shape[-1] == hidden_states.shape[1], (position_ids.shape, hidden_states.shape)
            position_embeddings = HOOKS_DEFAULT['position_embedding_forward'](self, position_ids, output_cross_layer=output_cross_layer, **kw_args)
        if position_embeddings is not None:
            hidden_states = hidden_states + position_embeddings
        hidden_states = self.embedding_dropout(hidden_states)

        output_per_layers = []
        if self.checkpoint_activations:
            # define custom_forward for checkpointing
            def custom(start, end, kw_args_index, cross_layer_index):
                def custom_forward(*inputs):
                    layers_ = self.layers[start:end]
                    x_, mask = inputs[0], inputs[1]

                    # recover kw_args and output_cross_layer
                    flat_inputs = inputs[2:]
                    kw_args, output_cross_layer = {}, {}
                    for k, idx in kw_args_index.items():
                        kw_args[k] = flat_inputs[idx]
                    for k, idx in cross_layer_index.items():
                        output_cross_layer[k] = flat_inputs[idx]
                    # -----------------

                    output_per_layers_part = []
                    for i, layer in enumerate(layers_):
                        output_this_layer_obj, output_cross_layer_obj = {}, {}
                        if 'layer_forward' in self.hooks:
                            layer_ret = self.hooks['layer_forward'](
                                x_, mask, layer_id=layer.layer_id,
                                **kw_args, position_ids=position_ids, **output_cross_layer,
                                output_this_layer=output_this_layer_obj,
                                output_cross_layer=output_cross_layer_obj
                            )
                        else:
                            layer_ret = layer(
                                x_, mask, layer_id=layer.layer_id,
                                **kw_args, position_ids=position_ids, **output_cross_layer,
                                output_this_layer=output_this_layer_obj,
                                output_cross_layer=output_cross_layer_obj
                            )
                        if isinstance(layer_ret, tuple):
                            layer_ret = layer_ret[0] # for legacy API
                        x_, output_this_layer, output_cross_layer = layer_ret, output_this_layer_obj, output_cross_layer_obj
                        if output_hidden_states:
                            output_this_layer['hidden_states'] = x_
                        output_per_layers_part.append(output_this_layer)

                    # flatten for re-aggregate keywords outputs
                    flat_outputs = []
                    for output_this_layer in output_per_layers_part:
                        for k in output_this_layer:
                            # TODO add warning for depth>=2 grad tensors
                            flat_outputs.append(output_this_layer[k])
                            output_this_layer[k] = len(flat_outputs) - 1
                    for k in output_cross_layer:
                        flat_outputs.append(output_cross_layer[k])
                        output_cross_layer[k] = len(flat_outputs) - 1
                    # --------------------

                    return (x_, output_per_layers_part, output_cross_layer, *flat_outputs)
                return custom_forward

            # prevent to lose requires_grad in checkpointing.
            # To save memory when only finetuning the final layers, don't use checkpointing.
            if self.training:
                hidden_states.requires_grad_(True)

            l, num_layers = 0, len(self.layers)
            chunk_length = self.checkpoint_num_layers
            output_this_layer = []
            while l < num_layers:
                args = [hidden_states, attention_mask]
                # flatten kw_args and output_cross_layer
                flat_inputs, kw_args_index, cross_layer_index = [], {}, {}
                for k, v in kw_args.items():
                    flat_inputs.append(v)
                    kw_args_index[k] = len(flat_inputs) - 1
                for k, v in output_cross_layer.items():
                    flat_inputs.append(v)
                    cross_layer_index[k] = len(flat_inputs) - 1
                # --------------------
                if l + self.checkpoint_skip_layers >= num_layers:
                    # no checkpointing
                    hidden_states, output_per_layers_part, output_cross_layer, *flat_outputs = \
                    custom(l, l + chunk_length, kw_args_index, cross_layer_index)(*args, *flat_inputs)
                else:
                    hidden_states, output_per_layers_part, output_cross_layer, *flat_outputs = \
                    checkpoint(custom(l, l + chunk_length, kw_args_index, cross_layer_index), *args, *flat_inputs)
                
                # recover output_per_layers_part, output_cross_layer
                for output_this_layer in output_per_layers_part:
                    for k in output_this_layer:
                        output_this_layer[k] = flat_outputs[output_this_layer[k]]
                for k in output_cross_layer:
                    output_cross_layer[k] = flat_outputs[output_cross_layer[k]]
                # --------------------

                output_per_layers.extend(output_per_layers_part)
                l += chunk_length
        else:
            output_this_layer = []
            for i, layer in enumerate(self.layers):
                args = [hidden_states, attention_mask]

                output_this_layer_obj, output_cross_layer_obj = {}, {}

                if 'layer_forward' in self.hooks: # customized layer_forward
                    layer_ret = self.hooks['layer_forward'](*args,
                        layer_id=torch.tensor(i),
                        **kw_args,
                        position_ids=position_ids,
                        **output_cross_layer,
                        output_this_layer=output_this_layer_obj, output_cross_layer=output_cross_layer_obj
                    )
                else:
                    layer_ret = layer(*args, layer_id=torch.tensor(i), **kw_args, position_ids=position_ids, **output_cross_layer,
                        output_this_layer=output_this_layer_obj, output_cross_layer=output_cross_layer_obj)
                if isinstance(layer_ret, tuple):
                    layer_ret = layer_ret[0] # for legacy API
                hidden_states, output_this_layer, output_cross_layer = layer_ret, output_this_layer_obj, output_cross_layer_obj

                if output_hidden_states:
                    output_this_layer['hidden_states'] = hidden_states
                output_per_layers.append(output_this_layer)

        # Final layer norm.
        if self.use_final_layernorm:
            logits = self.final_layernorm(hidden_states)
        else:
            logits = hidden_states

        logits = copy_to_model_parallel_region(logits)
        if 'final_forward' in self.hooks:
            logits_parallel = self.hooks['final_forward'](logits, **kw_args, parallel_output=self.parallel_output)
        else:
            logits_parallel = HOOKS_DEFAULT['final_forward'](self, logits, **kw_args, parallel_output=self.parallel_output)

        outputs = [logits_parallel]
        outputs.extend(output_per_layers)
        
        return outputs