Diffusion_test_offload_false.py 13.5 KB
Newer Older
gaoqiong's avatar
gaoqiong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#  The MIT License (MIT)
#
#  Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
#
#  Permission is hereby granted, free of charge, to any person obtaining a copy
#  of this software and associated documentation files (the 'Software'), to deal
#  in the Software without restriction, including without limitation the rights
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#  copies of the Software, and to permit persons to whom the Software is
#  furnished to do so, subject to the following conditions:
#
#  The above copyright notice and this permission notice shall be included in
#  all copies or substantial portions of the Software.
#
#  THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#  THE SOFTWARE.

from argparse import ArgumentParser
from diffusers import EulerDiscreteScheduler
from transformers import CLIPTokenizer
from PIL import Image

import migraphx as mgx
import os
import sys
import torch
import time
from functools import wraps

# measurement helper
def measure(fn):
    @wraps(fn)
    def measure_ms(*args, **kwargs):
        start_time = time.perf_counter_ns()
        result = fn(*args, **kwargs)
        end_time = time.perf_counter_ns()
        print(
            f"Elapsed time for {fn.__name__}: {(end_time - start_time) * 1e-6:.4f} ms\n"
        )
        return result

    return measure_ms


def get_args():
    parser = ArgumentParser()
    # Model compile
    parser.add_argument(
        "--onnx-model-path",
        type=str,
        default="/home/stable-diffusion-2-1-base",
        help="Path to onnx model files.",
    )

    parser.add_argument(
        "--compiled-model-path",
        type=str,
        default=None,
        help=
        "Path to compiled mxr model files. If not set, it will be saved next to the onnx model.",
    )

    parser.add_argument(
        "--fp16",
        choices=["all", "vae", "clip", "unet"],
        nargs="+",
        help="Quantize models with fp16 precision.",
    )

    parser.add_argument(
        "--force-compile",
        action="store_true",
        default=False,
        help="Ignore existing .mxr files and override them",
    )

    # Runtime
    parser.add_argument(
        "-s",
        "--seed",
        type=int,
        default=42,
        help="Random seed",
    )

    parser.add_argument(
        "-t",
        "--steps",
        type=int,
        default=20,
        help="Number of steps",
    )

    parser.add_argument(
        "-p",
        "--prompt",
        type=str,
        required=True,
        help="Prompt",
    )

    parser.add_argument(
        "-n",
        "--negative-prompt",
        type=str,
        default="",
        help="Negative prompt",
    )

    parser.add_argument(
        "--scale",
        type=float,
        default=7.0,
        help="Guidance scale",
    )

    parser.add_argument(
        "-o",
        "--output",
        type=str,
        default=None,
        help="Output name",
    )
    return parser.parse_args()


mgx_to_torch_dtype_dict = {
    "bool_type": torch.bool,
    "uint8_type": torch.uint8,
    "int8_type": torch.int8,
    "int16_type": torch.int16,
    "int32_type": torch.int32,
    "int64_type": torch.int64,
    "float_type": torch.float32,
    "double_type": torch.float64,
    "half_type": torch.float16,
}

torch_to_mgx_dtype_dict = {
    value: key
    for (key, value) in mgx_to_torch_dtype_dict.items()
}


def tensor_to_arg(tensor):
    return mgx.argument_from_pointer(
        mgx.shape(
            **{
                "type": torch_to_mgx_dtype_dict[tensor.dtype],
                "lens": list(tensor.size()),
                "strides": list(tensor.stride())
            }), tensor.data_ptr())


def tensors_to_args(tensors):
    return {name: tensor_to_arg(tensor) for name, tensor in tensors.items()}


def get_output_name(idx):
    return f"main:#output_{idx}"


def copy_tensor_sync(tensor, data):
    tensor.copy_(data)
    torch.cuda.synchronize()


def run_model_sync(model, args):
    model.run(args)
    mgx.gpu_sync()


def allocate_torch_tensors(model):
    input_shapes = model.get_parameter_shapes()
    data_mapping = {
        name: torch.zeros(shape.lens()).to(
            mgx_to_torch_dtype_dict[shape.type_string()]).to(device="cuda")
        for name, shape in input_shapes.items()
    }
    return data_mapping


class StableDiffusionMGX():
    def __init__(self, onnx_model_path, compiled_model_path, fp16,
                 force_compile):
        model_id = onnx_model_path
        print(f"Using {model_id}")

        print("Creating EulerDiscreteScheduler scheduler")
        self.scheduler = EulerDiscreteScheduler.from_pretrained(
            model_id, subfolder="scheduler")

        print("Creating CLIPTokenizer tokenizer...")
        self.tokenizer = CLIPTokenizer.from_pretrained(model_id,
                                                       subfolder="tokenizer")
        if fp16 is None:
            fp16 = []
        elif "all" in fp16:
            fp16 = ["vae", "clip", "unet"]

        print("Load models...")
        self.models = {
            "vae":
            StableDiffusionMGX.load_mgx_model(
                "vae_decoder", {"latent_sample": [1, 4, 64, 64]},
                onnx_model_path,
                compiled_model_path=compiled_model_path,
                use_fp16="vae" in fp16,
                force_compile=force_compile,
                offload_copy=False),
            "clip":
            StableDiffusionMGX.load_mgx_model(
                "text_encoder", {"input_ids": [2, 77]},
                onnx_model_path,
                compiled_model_path=compiled_model_path,
                use_fp16="clip" in fp16,
                force_compile=force_compile,
                offload_copy=False),
            "unet":
            StableDiffusionMGX.load_mgx_model(
                "unet", {
                    "sample": [2, 4, 64, 64],
                    "encoder_hidden_states": [2, 77, 1024],
                    "timestep": [1],
                },
                onnx_model_path,
                compiled_model_path=compiled_model_path,
                use_fp16="unet" in fp16,
                force_compile=force_compile,
                offload_copy=False)
        }

        self.tensors = {
            "clip": allocate_torch_tensors(self.models["clip"]),
            "unet": allocate_torch_tensors(self.models["unet"]),
            "vae": allocate_torch_tensors(self.models["vae"]),
        }

        self.model_args = {
            "clip": tensors_to_args(self.tensors['clip']),
            "unet": tensors_to_args(self.tensors['unet']),
            "vae": tensors_to_args(self.tensors['vae']),
        }

    @measure
    @torch.no_grad()
    def run(self, prompt, negative_prompt, steps, seed, scale):
        torch.cuda.synchronize()
        # need to set this for each run
        self.scheduler.set_timesteps(steps, device="cuda")

        print("Tokenizing prompts...")
        prompt_tokens = self.tokenize(prompt, negative_prompt)

        print("Creating text embeddings...")
        text_embeddings = self.get_embeddings(prompt_tokens)

        print(
            f"Creating random input data ({1}x{4}x{64}x{64}) (latents) with seed={seed}..."
        )
        latents = torch.randn(
            (1, 4, 64, 64),
            generator=torch.manual_seed(seed)).to(device="cuda")

        print("Apply initial noise sigma\n")
        latents = latents * self.scheduler.init_noise_sigma

        print("Running denoising loop...")
        for step, t in enumerate(self.scheduler.timesteps):
            print(f"#{step}/{len(self.scheduler.timesteps)} step")
            latents = self.denoise_step(text_embeddings, latents, t, scale)

        print("Scale denoised result...")
        latents = 1 / 0.18215 * latents

        print("Decode denoised result...")
        image = self.decode(latents)

        torch.cuda.synchronize()
        return image

    @staticmethod
    @measure
    def load_mgx_model(name,
                       shapes,
                       onnx_model_path,
                       compiled_model_path=None,
                       use_fp16=False,
                       force_compile=False,
                       offload_copy=True):
        print(f"Loading {name} model...")
        if compiled_model_path is None:
            compiled_model_path = onnx_model_path
        onnx_file = f"{onnx_model_path}/{name}/model.onnx"
        mxr_file = f"{compiled_model_path}/{name}/model_{'fp16' if use_fp16 else 'fp32'}_{'gpu' if not offload_copy else 'oc'}.mxr"
        if not force_compile and os.path.isfile(mxr_file):
            print(f"Found mxr, loading it from {mxr_file}")
            model = mgx.load(mxr_file, format="msgpack")
        elif os.path.isfile(onnx_file):
            print(f"No mxr found at {mxr_file}")
            print(f"Parsing from {onnx_file}")
            model = mgx.parse_onnx(onnx_file, map_input_dims=shapes)
            if use_fp16:
                mgx.quantize_fp16(model)
            model.compile(mgx.get_target("gpu"),
                          offload_copy=offload_copy)
            print(f"Saving {name} model to {mxr_file}")
            os.makedirs(os.path.dirname(mxr_file), exist_ok=True)
            mgx.save(model, mxr_file, format="msgpack")
        else:
            print(
                f"No {name} model found at {onnx_file} or {mxr_file}. Please download it and re-try."
            )
            sys.exit(1)
        return model

    @measure
    def tokenize(self, prompt, negative_prompt):
        return self.tokenizer([prompt, negative_prompt],
                              padding="max_length",
                              max_length=self.tokenizer.model_max_length,
                              truncation=True,
                              return_tensors="pt")

    @measure
    def get_embeddings(self, prompt_tokens):
        copy_tensor_sync(self.tensors["clip"]["input_ids"],
                         prompt_tokens.input_ids.to(torch.int32))
        run_model_sync(self.models["clip"], self.model_args["clip"])
        return self.tensors["clip"][get_output_name(0)]

    @staticmethod
    def convert_to_rgb_image(image):
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
        images = (image * 255).round().astype("uint8")
        return Image.fromarray(images[0])

    @staticmethod
    def save_image(pil_image, filename="output.png"):
        pil_image.save(filename)

    @measure
    def denoise_step(self, text_embeddings, latents, t, scale):
        latents_model_input = torch.cat([latents] * 2)
        latents_model_input = self.scheduler.scale_model_input(
            latents_model_input, t).to(torch.float32).to(device="cuda")
        timestep = torch.atleast_1d(t.to(torch.int64)).to(
            device="cuda")  # convert 0D -> 1D

        copy_tensor_sync(self.tensors["unet"]["sample"], latents_model_input)
        copy_tensor_sync(self.tensors["unet"]["encoder_hidden_states"],
                         text_embeddings)
        copy_tensor_sync(self.tensors["unet"]["timestep"], timestep)
        run_model_sync(self.models["unet"], self.model_args['unet'])

        noise_pred_text, noise_pred_uncond = torch.tensor_split(
            self.tensors["unet"][get_output_name(0)], 2)

        # perform guidance
        noise_pred = noise_pred_uncond + scale * (noise_pred_text -
                                                  noise_pred_uncond)

        # compute the previous noisy sample x_t -> x_t-1
        return self.scheduler.step(noise_pred, t, latents).prev_sample

    @measure
    def decode(self, latents):
        copy_tensor_sync(self.tensors["vae"]["latent_sample"], latents)
        run_model_sync(self.models["vae"], self.model_args["vae"])
        return self.tensors["vae"][get_output_name(0)]

    @measure
    def warmup(self, num_runs):

        copy_tensor_sync(self.tensors["clip"]["input_ids"],
                         torch.ones((2, 77)).to(torch.int32))
        copy_tensor_sync(self.tensors["unet"]["sample"],
                         torch.randn((2, 4, 64, 64)).to(torch.float32))
        copy_tensor_sync(self.tensors["unet"]["encoder_hidden_states"],
                         torch.randn((2, 77, 1024)).to(torch.float32))
        copy_tensor_sync(self.tensors["unet"]["timestep"],
                         torch.atleast_1d(torch.randn(1).to(torch.int64)))
        copy_tensor_sync(self.tensors["vae"]["latent_sample"],
                         torch.randn((1, 4, 64, 64)).to(torch.float32))

        for _ in range(num_runs):
            run_model_sync(self.models["clip"], self.model_args["clip"])
            run_model_sync(self.models["unet"], self.model_args["unet"])
            run_model_sync(self.models["vae"], self.model_args["vae"])


if __name__ == "__main__":
    args = get_args()

    sd = StableDiffusionMGX(args.onnx_model_path, args.compiled_model_path,
                            args.fp16, args.force_compile)
    sd.warmup(5)
    result = sd.run(args.prompt, args.negative_prompt, args.steps, args.seed,
                    args.scale)

    print("Convert result to rgb image...")
    image = StableDiffusionMGX.convert_to_rgb_image(result)
    filename = args.output if args.output else f"output_s{args.seed}_t{args.steps}.png"
    StableDiffusionMGX.save_image(image, filename)
    print(f"Image saved to {filename}")