resnet.py 16.9 KB
Newer Older
chenxj's avatar
chenxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#  Copyright (c) Meta Platforms, Inc. and affiliates.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import numpy as np
from aitemplate.frontend import nn
from aitemplate.testing import detect_target


class CNNBlockBase(nn.Module):
    """
    A CNN block is assumed to have input channels, output channels and a stride.
    The input and output of `forward()` method must be NHWC tensors.
    The method can perform arbitrary computation but must match the given
    channels and stride specification.
    Attribute:
        in_channels (int):
        out_channels (int):
        stride (int):
    """

    def __init__(self, in_channels, out_channels, stride):
        """
        The `__init__` method of any subclass should also contain these arguments.
        Args:
            in_channels (int):
            out_channels (int):
            stride (int):
        """
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.stride = stride


class BasicStem(CNNBlockBase):
    """
    The standard ResNet stem (layers before the first residual block),
    with a conv, relu and max_pool.
    """

    def __init__(self, in_channels=3, out_channels=64, norm="BN", activation="ReLU"):
        super().__init__(in_channels, out_channels, 4)
        conv_op = None
        if detect_target().name() == "cuda":
            if activation == "ReLU":
                conv_op = nn.Conv2dBiasReluFewChannels
            elif activation == "Hardswish":
                conv_op = nn.Conv2dBiasHardswishFewChannels
            else:
                raise NotImplementedError
        else:
            if activation == "ReLU":
                conv_op = nn.Conv2dBiasRelu
            elif activation == "Hardswish":
                conv_op = nn.Conv2dBiasHardswish
            else:
                raise NotImplementedError
        self.conv1 = conv_op(in_channels, out_channels, 7, 2, 7 // 2)
        self.pool = nn.MaxPool2d(3, 2, 1)

    def forward(self, x):
        x = self.conv1(x)
        x = self.pool(x)
        return x


class BasicBlock(CNNBlockBase):
    """
    The basic residual block for ResNet-18 and ResNet-34 defined in :paper:`ResNet`,
    with two 3x3 conv layers and a projection shortcut if needed.
    """

    def __init__(self, in_channels, out_channels, *, stride=1, norm="BN"):
        super().__init__(in_channels, out_channels, stride)

    def forward(self, x):
        raise NotImplementedError()


class BottleneckBlock(CNNBlockBase):
    """
    The standard bottleneck residual block used by ResNet-50, 101 and 152
    defined in :paper:`ResNet`.  It contains 3 conv layers with kernels
    1x1, 3x3, 1x1, and a projection shortcut if needed.
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        *,
        bottleneck_channels,
        stride=1,
        num_groups=1,
        norm="BN",
        activation="ReLU",
        stride_in_1x1=False,
        dilation=1,
    ):
        """
        Args:
            bottleneck_channels (int): number of output channels for the 3x3
                "bottleneck" conv layers.
            num_groups (int): number of groups for the 3x3 conv layer.
            norm (str or callable): normalization for all conv layers.
                See :func:`layers.get_norm` for supported format.
            stride_in_1x1 (bool): when stride>1, whether to put stride in the
                first 1x1 convolution or the bottleneck 3x3 convolution.
            dilation (int): the dilation rate of the 3x3 conv layer.
        """
        super().__init__(in_channels, out_channels, stride)

        if in_channels != out_channels:
            self.downsample_0 = nn.Conv2dBias(in_channels, out_channels, 1, stride, 0)
        else:
            self.downsample_0 = None

        # The original MSRA ResNet models have stride in the first 1x1 conv
        # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
        # stride in the 3x3 conv
        stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)

        conv_op = None
        conv_op_add = None
        if activation == "ReLU":
            conv_op = nn.Conv2dBiasRelu
            conv_op_add = nn.Conv2dBiasAddRelu
        elif activation == "Hardswish":
            conv_op = nn.Conv2dBiasHardswish
            conv_op_add = nn.Conv2dBiasAddHardswish
        else:
            raise NotImplementedError

        self.conv1 = conv_op(in_channels, bottleneck_channels, 1, stride_1x1, 0)

        self.conv2 = conv_op(
            bottleneck_channels,
            bottleneck_channels,
            3,
            stride_3x3,
            1 * dilation,
            dilation,
        )

        self.conv3 = conv_op_add(bottleneck_channels, out_channels, 1, 1, 0)

        # for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
        #     if layer is not None:  # shortcut can be None
        #         weight_init.c2_msra_fill(layer)

        # Zero-initialize the last normalization in each residual branch,
        # so that at the beginning, the residual branch starts with zeros,
        # and each residual block behaves like an identity.
        # See Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
        # "For BN layers, the learnable scaling coefficient γ is initialized
        # to be 1, except for each residual block's last BN
        # where γ is initialized to be 0."

        # nn.init.constant_(self.conv3.norm.weight, 0)
        # TODO this somehow hurts performance when training GN models from scratch.
        # Add it as an option when we need to use this code to train a backbone.

    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)

        if self.downsample_0 is not None:
            downsample = self.downsample_0(x)
        else:
            downsample = x

        out = self.conv3(out, downsample)
        return out


class ResNet(nn.Module):
    """
    Implement :paper:`ResNet`.
    """

    def __init__(self, stem, stages, num_classes=None, out_features=None, freeze_at=0):
        """
        Args:
            stem (nn.Module): a stem module
            stages (list[list[CNNBlockBase]]): several (typically 4) stages,
                each contains multiple :class:`CNNBlockBase`.
            activation (str): activation function to use.
            num_classes (None or int): if None, will not perform classification.
                Otherwise, will create a linear layer.
            out_features (list[str]): name of the layers whose outputs should
                be returned in forward. Can be anything in "stem", "linear", or "res2" ...
                If None, will return the output of the last layer.
            freeze_at (int): The number of stages at the beginning to freeze.
                see :meth:`freeze` for detailed explanation.
        """
        super().__init__()
        self.stem = stem
        self.num_classes = num_classes

        current_stride = self.stem.stride
        self._out_feature_strides = {"stem": current_stride}
        self._out_feature_channels = {"stem": self.stem.out_channels}

        self.stage_names, self.stages = [], []

        if out_features is not None:
            # Avoid keeping unused layers in this module. They consume extra memory
            # and may cause allreduce to fail
            num_stages = max(
                [
                    {"layer1": 1, "layer2": 2, "layer3": 3, "layer4": 4}.get(f, 0)
                    for f in out_features
                ]
            )
            stages = stages[:num_stages]

        for i, blocks in enumerate(stages):
            assert len(blocks) > 0, len(blocks)
            for block in blocks:
                assert isinstance(block, CNNBlockBase), block

            name = "layer" + str(i + 1)
            stage = nn.Sequential(*blocks)

            self.add_module(name, stage)
            self.stage_names.append(name)
            self.stages.append(stage)

            self._out_feature_strides[name] = current_stride = int(
                current_stride * np.prod([k.stride for k in blocks])
            )
            self._out_feature_channels[name] = curr_channels = blocks[-1].out_channels

        self.stage_names = tuple(self.stage_names)  # Make it static for scripting

        if num_classes is not None:
            self.avgpool = nn.AvgPool2d(7, 1, 0)
            self.fc = nn.Linear(curr_channels, num_classes)

        if out_features is None:
            out_features = [name]
        self._out_features = out_features
        assert len(self._out_features)
        children = [x[0] for x in self.named_children()]
        for out_feature in self._out_features:
            assert out_feature in children, "Available children: {}".format(
                ", ".join(children)
            )
        self.reshape = nn.Reshape()

    def forward(self, x):
        """
        Args:
            x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
        Returns:
            dict[str->Tensor]: names and the corresponding features
        """
        # assert x.dim() == 4, f"ResNet takes an input of shape (N, C, H, W). Got {x.shape} instead!"
        outputs = {}
        x = self.stem(x)
        if "stem" in self._out_features:
            outputs["stem"] = x
        for name, stage in zip(self.stage_names, self.stages):
            x = stage(x)
            if name in self._out_features:
                outputs[name] = x
        if self.num_classes is not None:
            x = self.avgpool(x)
            x = self.fc(x)
            if x._rank() == 2:
                x = self.reshape(x, [x._size(0), 1, 1, x._size(1)])
            return x
        return outputs

    @staticmethod
    def make_stage(block_class, num_blocks, *, in_channels, out_channels, **kwargs):
        """
        Create a list of blocks of the same type that forms one ResNet stage.
        Args:
            block_class (type): a subclass of CNNBlockBase that's used to create all blocks in this
                stage. A module of this type must not change spatial resolution of inputs unless its
                stride != 1.
            num_blocks (int): number of blocks in this stage
            in_channels (int): input channels of the entire stage.
            out_channels (int): output channels of **every block** in the stage.
            kwargs: other arguments passed to the constructor of
                `block_class`. If the argument name is "xx_per_block", the
                argument is a list of values to be passed to each block in the
                stage. Otherwise, the same argument is passed to every block
                in the stage.
        Returns:
            list[CNNBlockBase]: a list of block module.
        Examples:
        ::
            stage = ResNet.make_stage(
                BottleneckBlock, 3, in_channels=16, out_channels=64,
                bottleneck_channels=16, num_groups=1,
                stride_per_block=[2, 1, 1],
                dilations_per_block=[1, 1, 2]
            )
        Usually, layers that produce the same feature map spatial size are defined as one
        "stage" (in :paper:`FPN`). Under such definition, ``stride_per_block[1:]`` should
        all be 1.
        """
        blocks = []
        for i in range(num_blocks):
            curr_kwargs = {}
            for k, v in kwargs.items():
                if k.endswith("_per_block"):
                    assert len(v) == num_blocks, (
                        f"Argument '{k}' of make_stage should have the "
                        f"same length as num_blocks={num_blocks}."
                    )
                    newk = k[: -len("_per_block")]
                    assert (
                        newk not in kwargs
                    ), f"Cannot call make_stage with both {k} and {newk}!"
                    curr_kwargs[newk] = v[i]
                else:
                    curr_kwargs[k] = v

            blocks.append(
                block_class(
                    in_channels=in_channels, out_channels=out_channels, **curr_kwargs
                )
            )
            in_channels = out_channels
        return blocks

    @staticmethod
    def make_default_stages(depth, block_class=None, **kwargs):
        """
        Created list of ResNet stages from pre-defined depth (one of 18, 34, 50, 101, 152).
        If it doesn't create the ResNet variant you need, please use :meth:`make_stage`
        instead for fine-grained customization.
        Args:
            depth (int): depth of ResNet
            block_class (type): the CNN block class. Has to accept
                `bottleneck_channels` argument for depth > 50.
                By default it is BasicBlock or BottleneckBlock, based on the
                depth.
            kwargs:
                other arguments to pass to `make_stage`. Should not contain
                stride and channels, as they are predefined for each depth.
        Returns:
            list[list[CNNBlockBase]]: modules in all stages; see arguments of
                :class:`ResNet.__init__`.
        """
        num_blocks_per_stage = {
            18: [2, 2, 2, 2],
            34: [3, 4, 6, 3],
            50: [3, 4, 6, 3],
            101: [3, 4, 23, 3],
            152: [3, 8, 36, 3],
        }[depth]
        if block_class is None:
            block_class = BasicBlock if depth < 50 else BottleneckBlock
        if depth < 50:
            in_channels = [64, 64, 128, 256]
            out_channels = [64, 128, 256, 512]
        else:
            in_channels = [64, 256, 512, 1024]
            out_channels = [256, 512, 1024, 2048]
        ret = []
        for (n, s, i, o) in zip(
            num_blocks_per_stage, [1, 2, 2, 2], in_channels, out_channels
        ):
            if depth >= 50:
                kwargs["bottleneck_channels"] = o // 4
            ret.append(
                ResNet.make_stage(
                    block_class=block_class,
                    num_blocks=n,
                    stride_per_block=[s] + [1] * (n - 1),
                    in_channels=i,
                    out_channels=o,
                    **kwargs,
                )
            )
        return ret


def make_stage(*args, **kwargs):
    """
    Deprecated alias for backward compatibiltiy.
    """
    return ResNet.make_stage(*args, **kwargs)


def build_resnet_backbone(depth, activation):
    """
    Create a ResNet instance from config.
    Returns:
        ResNet: a :class:`ResNet` instance.
    """
    norm = "BN"
    activation = activation
    num_groups = 1
    stride_in_1x1 = False
    num_groups = 1
    width_per_group = 64
    bottleneck_channels = num_groups * width_per_group
    in_channels = 64
    out_channels = 256

    stem = BasicStem(in_channels=3, out_channels=64, norm=norm, activation=activation)

    num_blocks_per_stage = {
        18: [2, 2, 2, 2],
        34: [3, 4, 6, 3],
        50: [3, 4, 6, 3],
        101: [3, 4, 23, 3],
        152: [3, 8, 36, 3],
    }[depth]

    stages = []

    for idx, stage_idx in enumerate(range(2, 6)):
        # res5_dilation is used this way as a convention in R-FCN & Deformable Conv paper
        dilation = 1
        first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
        stage_kargs = {
            "num_blocks": num_blocks_per_stage[idx],
            "stride_per_block": [first_stride] + [1] * (num_blocks_per_stage[idx] - 1),
            "in_channels": in_channels,
            "out_channels": out_channels,
            "norm": norm,
            "activation": activation,
        }
        # Use BasicBlock for R18 and R34.
        if depth in [18, 34]:
            stage_kargs["block_class"] = BasicBlock
        else:
            stage_kargs["bottleneck_channels"] = bottleneck_channels
            stage_kargs["stride_in_1x1"] = stride_in_1x1
            stage_kargs["dilation"] = dilation
            stage_kargs["num_groups"] = num_groups
            stage_kargs["block_class"] = BottleneckBlock
        blocks = ResNet.make_stage(**stage_kargs)
        in_channels = out_channels
        out_channels *= 2
        bottleneck_channels *= 2
        stages.append(blocks)

    return ResNet(stem, stages, num_classes=1000)