# Copyright (c) Meta Platforms, Inc. and affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np from aitemplate.frontend import nn from aitemplate.testing import detect_target class CNNBlockBase(nn.Module): """ A CNN block is assumed to have input channels, output channels and a stride. The input and output of `forward()` method must be NHWC tensors. The method can perform arbitrary computation but must match the given channels and stride specification. Attribute: in_channels (int): out_channels (int): stride (int): """ def __init__(self, in_channels, out_channels, stride): """ The `__init__` method of any subclass should also contain these arguments. Args: in_channels (int): out_channels (int): stride (int): """ super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.stride = stride class BasicStem(CNNBlockBase): """ The standard ResNet stem (layers before the first residual block), with a conv, relu and max_pool. """ def __init__(self, in_channels=3, out_channels=64, norm="BN", activation="ReLU"): super().__init__(in_channels, out_channels, 4) conv_op = None if detect_target().name() == "cuda": if activation == "ReLU": conv_op = nn.Conv2dBiasReluFewChannels elif activation == "Hardswish": conv_op = nn.Conv2dBiasHardswishFewChannels else: raise NotImplementedError else: if activation == "ReLU": conv_op = nn.Conv2dBiasRelu elif activation == "Hardswish": conv_op = nn.Conv2dBiasHardswish else: raise NotImplementedError self.conv1 = conv_op(in_channels, out_channels, 7, 2, 7 // 2) self.pool = nn.MaxPool2d(3, 2, 1) def forward(self, x): x = self.conv1(x) x = self.pool(x) return x class BasicBlock(CNNBlockBase): """ The basic residual block for ResNet-18 and ResNet-34 defined in :paper:`ResNet`, with two 3x3 conv layers and a projection shortcut if needed. """ def __init__(self, in_channels, out_channels, *, stride=1, norm="BN"): super().__init__(in_channels, out_channels, stride) def forward(self, x): raise NotImplementedError() class BottleneckBlock(CNNBlockBase): """ The standard bottleneck residual block used by ResNet-50, 101 and 152 defined in :paper:`ResNet`. It contains 3 conv layers with kernels 1x1, 3x3, 1x1, and a projection shortcut if needed. """ def __init__( self, in_channels, out_channels, *, bottleneck_channels, stride=1, num_groups=1, norm="BN", activation="ReLU", stride_in_1x1=False, dilation=1, ): """ Args: bottleneck_channels (int): number of output channels for the 3x3 "bottleneck" conv layers. num_groups (int): number of groups for the 3x3 conv layer. norm (str or callable): normalization for all conv layers. See :func:`layers.get_norm` for supported format. stride_in_1x1 (bool): when stride>1, whether to put stride in the first 1x1 convolution or the bottleneck 3x3 convolution. dilation (int): the dilation rate of the 3x3 conv layer. """ super().__init__(in_channels, out_channels, stride) if in_channels != out_channels: self.downsample_0 = nn.Conv2dBias(in_channels, out_channels, 1, stride, 0) else: self.downsample_0 = None # The original MSRA ResNet models have stride in the first 1x1 conv # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have # stride in the 3x3 conv stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride) conv_op = None conv_op_add = None if activation == "ReLU": conv_op = nn.Conv2dBiasRelu conv_op_add = nn.Conv2dBiasAddRelu elif activation == "Hardswish": conv_op = nn.Conv2dBiasHardswish conv_op_add = nn.Conv2dBiasAddHardswish else: raise NotImplementedError self.conv1 = conv_op(in_channels, bottleneck_channels, 1, stride_1x1, 0) self.conv2 = conv_op( bottleneck_channels, bottleneck_channels, 3, stride_3x3, 1 * dilation, dilation, ) self.conv3 = conv_op_add(bottleneck_channels, out_channels, 1, 1, 0) # for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]: # if layer is not None: # shortcut can be None # weight_init.c2_msra_fill(layer) # Zero-initialize the last normalization in each residual branch, # so that at the beginning, the residual branch starts with zeros, # and each residual block behaves like an identity. # See Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour": # "For BN layers, the learnable scaling coefficient γ is initialized # to be 1, except for each residual block's last BN # where γ is initialized to be 0." # nn.init.constant_(self.conv3.norm.weight, 0) # TODO this somehow hurts performance when training GN models from scratch. # Add it as an option when we need to use this code to train a backbone. def forward(self, x): out = self.conv1(x) out = self.conv2(out) if self.downsample_0 is not None: downsample = self.downsample_0(x) else: downsample = x out = self.conv3(out, downsample) return out class ResNet(nn.Module): """ Implement :paper:`ResNet`. """ def __init__(self, stem, stages, num_classes=None, out_features=None, freeze_at=0): """ Args: stem (nn.Module): a stem module stages (list[list[CNNBlockBase]]): several (typically 4) stages, each contains multiple :class:`CNNBlockBase`. activation (str): activation function to use. num_classes (None or int): if None, will not perform classification. Otherwise, will create a linear layer. out_features (list[str]): name of the layers whose outputs should be returned in forward. Can be anything in "stem", "linear", or "res2" ... If None, will return the output of the last layer. freeze_at (int): The number of stages at the beginning to freeze. see :meth:`freeze` for detailed explanation. """ super().__init__() self.stem = stem self.num_classes = num_classes current_stride = self.stem.stride self._out_feature_strides = {"stem": current_stride} self._out_feature_channels = {"stem": self.stem.out_channels} self.stage_names, self.stages = [], [] if out_features is not None: # Avoid keeping unused layers in this module. They consume extra memory # and may cause allreduce to fail num_stages = max( [ {"layer1": 1, "layer2": 2, "layer3": 3, "layer4": 4}.get(f, 0) for f in out_features ] ) stages = stages[:num_stages] for i, blocks in enumerate(stages): assert len(blocks) > 0, len(blocks) for block in blocks: assert isinstance(block, CNNBlockBase), block name = "layer" + str(i + 1) stage = nn.Sequential(*blocks) self.add_module(name, stage) self.stage_names.append(name) self.stages.append(stage) self._out_feature_strides[name] = current_stride = int( current_stride * np.prod([k.stride for k in blocks]) ) self._out_feature_channels[name] = curr_channels = blocks[-1].out_channels self.stage_names = tuple(self.stage_names) # Make it static for scripting if num_classes is not None: self.avgpool = nn.AvgPool2d(7, 1, 0) self.fc = nn.Linear(curr_channels, num_classes) if out_features is None: out_features = [name] self._out_features = out_features assert len(self._out_features) children = [x[0] for x in self.named_children()] for out_feature in self._out_features: assert out_feature in children, "Available children: {}".format( ", ".join(children) ) self.reshape = nn.Reshape() def forward(self, x): """ Args: x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. Returns: dict[str->Tensor]: names and the corresponding features """ # assert x.dim() == 4, f"ResNet takes an input of shape (N, C, H, W). Got {x.shape} instead!" outputs = {} x = self.stem(x) if "stem" in self._out_features: outputs["stem"] = x for name, stage in zip(self.stage_names, self.stages): x = stage(x) if name in self._out_features: outputs[name] = x if self.num_classes is not None: x = self.avgpool(x) x = self.fc(x) if x._rank() == 2: x = self.reshape(x, [x._size(0), 1, 1, x._size(1)]) return x return outputs @staticmethod def make_stage(block_class, num_blocks, *, in_channels, out_channels, **kwargs): """ Create a list of blocks of the same type that forms one ResNet stage. Args: block_class (type): a subclass of CNNBlockBase that's used to create all blocks in this stage. A module of this type must not change spatial resolution of inputs unless its stride != 1. num_blocks (int): number of blocks in this stage in_channels (int): input channels of the entire stage. out_channels (int): output channels of **every block** in the stage. kwargs: other arguments passed to the constructor of `block_class`. If the argument name is "xx_per_block", the argument is a list of values to be passed to each block in the stage. Otherwise, the same argument is passed to every block in the stage. Returns: list[CNNBlockBase]: a list of block module. Examples: :: stage = ResNet.make_stage( BottleneckBlock, 3, in_channels=16, out_channels=64, bottleneck_channels=16, num_groups=1, stride_per_block=[2, 1, 1], dilations_per_block=[1, 1, 2] ) Usually, layers that produce the same feature map spatial size are defined as one "stage" (in :paper:`FPN`). Under such definition, ``stride_per_block[1:]`` should all be 1. """ blocks = [] for i in range(num_blocks): curr_kwargs = {} for k, v in kwargs.items(): if k.endswith("_per_block"): assert len(v) == num_blocks, ( f"Argument '{k}' of make_stage should have the " f"same length as num_blocks={num_blocks}." ) newk = k[: -len("_per_block")] assert ( newk not in kwargs ), f"Cannot call make_stage with both {k} and {newk}!" curr_kwargs[newk] = v[i] else: curr_kwargs[k] = v blocks.append( block_class( in_channels=in_channels, out_channels=out_channels, **curr_kwargs ) ) in_channels = out_channels return blocks @staticmethod def make_default_stages(depth, block_class=None, **kwargs): """ Created list of ResNet stages from pre-defined depth (one of 18, 34, 50, 101, 152). If it doesn't create the ResNet variant you need, please use :meth:`make_stage` instead for fine-grained customization. Args: depth (int): depth of ResNet block_class (type): the CNN block class. Has to accept `bottleneck_channels` argument for depth > 50. By default it is BasicBlock or BottleneckBlock, based on the depth. kwargs: other arguments to pass to `make_stage`. Should not contain stride and channels, as they are predefined for each depth. Returns: list[list[CNNBlockBase]]: modules in all stages; see arguments of :class:`ResNet.__init__`. """ num_blocks_per_stage = { 18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], }[depth] if block_class is None: block_class = BasicBlock if depth < 50 else BottleneckBlock if depth < 50: in_channels = [64, 64, 128, 256] out_channels = [64, 128, 256, 512] else: in_channels = [64, 256, 512, 1024] out_channels = [256, 512, 1024, 2048] ret = [] for (n, s, i, o) in zip( num_blocks_per_stage, [1, 2, 2, 2], in_channels, out_channels ): if depth >= 50: kwargs["bottleneck_channels"] = o // 4 ret.append( ResNet.make_stage( block_class=block_class, num_blocks=n, stride_per_block=[s] + [1] * (n - 1), in_channels=i, out_channels=o, **kwargs, ) ) return ret def make_stage(*args, **kwargs): """ Deprecated alias for backward compatibiltiy. """ return ResNet.make_stage(*args, **kwargs) def build_resnet_backbone(depth, activation): """ Create a ResNet instance from config. Returns: ResNet: a :class:`ResNet` instance. """ norm = "BN" activation = activation num_groups = 1 stride_in_1x1 = False num_groups = 1 width_per_group = 64 bottleneck_channels = num_groups * width_per_group in_channels = 64 out_channels = 256 stem = BasicStem(in_channels=3, out_channels=64, norm=norm, activation=activation) num_blocks_per_stage = { 18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], }[depth] stages = [] for idx, stage_idx in enumerate(range(2, 6)): # res5_dilation is used this way as a convention in R-FCN & Deformable Conv paper dilation = 1 first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2 stage_kargs = { "num_blocks": num_blocks_per_stage[idx], "stride_per_block": [first_stride] + [1] * (num_blocks_per_stage[idx] - 1), "in_channels": in_channels, "out_channels": out_channels, "norm": norm, "activation": activation, } # Use BasicBlock for R18 and R34. if depth in [18, 34]: stage_kargs["block_class"] = BasicBlock else: stage_kargs["bottleneck_channels"] = bottleneck_channels stage_kargs["stride_in_1x1"] = stride_in_1x1 stage_kargs["dilation"] = dilation stage_kargs["num_groups"] = num_groups stage_kargs["block_class"] = BottleneckBlock blocks = ResNet.make_stage(**stage_kargs) in_channels = out_channels out_channels *= 2 bottleneck_channels *= 2 stages.append(blocks) return ResNet(stem, stages, num_classes=1000)