defaults.py 3.45 KB
Newer Older
xinghao's avatar
xinghao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from yacs.config import CfgNode as CN

_C = CN()

_C.MODEL = CN()
_C.MODEL.META_ARCHITECTURE = 'SSDDetector'
_C.MODEL.DEVICE = "cuda"
# match default boxes to any ground truth with jaccard overlap higher than a threshold (0.5)
_C.MODEL.THRESHOLD = 0.5
_C.MODEL.NUM_CLASSES = 21
# Hard negative mining
_C.MODEL.NEG_POS_RATIO = 3
_C.MODEL.CENTER_VARIANCE = 0.1
_C.MODEL.SIZE_VARIANCE = 0.2

# ---------------------------------------------------------------------------- #
# Backbone
# ---------------------------------------------------------------------------- #
_C.MODEL.BACKBONE = CN()
_C.MODEL.BACKBONE.NAME = 'vgg'
_C.MODEL.BACKBONE.OUT_CHANNELS = (512, 1024, 512, 256, 256, 256)
_C.MODEL.BACKBONE.PRETRAINED = True

# -----------------------------------------------------------------------------
# PRIORS
# -----------------------------------------------------------------------------
_C.MODEL.PRIORS = CN()
_C.MODEL.PRIORS.FEATURE_MAPS = [38, 19, 10, 5, 3, 1]
_C.MODEL.PRIORS.STRIDES = [8, 16, 32, 64, 100, 300]
_C.MODEL.PRIORS.MIN_SIZES = [30, 60, 111, 162, 213, 264]
_C.MODEL.PRIORS.MAX_SIZES = [60, 111, 162, 213, 264, 315]
_C.MODEL.PRIORS.ASPECT_RATIOS = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
# When has 1 aspect ratio, every location has 4 boxes, 2 ratio 6 boxes.
# #boxes = 2 + #ratio * 2
_C.MODEL.PRIORS.BOXES_PER_LOCATION = [4, 6, 6, 6, 4, 4]  # number of boxes per feature map location
_C.MODEL.PRIORS.CLIP = True

# -----------------------------------------------------------------------------
# Box Head
# -----------------------------------------------------------------------------
_C.MODEL.BOX_HEAD = CN()
_C.MODEL.BOX_HEAD.NAME = 'SSDBoxHead'
_C.MODEL.BOX_HEAD.PREDICTOR = 'SSDBoxPredictor'

# -----------------------------------------------------------------------------
# INPUT
# -----------------------------------------------------------------------------
_C.INPUT = CN()
# Image size
_C.INPUT.IMAGE_SIZE = 300
# Values to be used for image normalization, RGB layout
_C.INPUT.PIXEL_MEAN = [123, 117, 104]

# -----------------------------------------------------------------------------
# Dataset
# -----------------------------------------------------------------------------
_C.DATASETS = CN()
# List of the dataset names for training, as present in paths_catalog.py
_C.DATASETS.TRAIN = ()
# List of the dataset names for testing, as present in paths_catalog.py
_C.DATASETS.TEST = ()

# -----------------------------------------------------------------------------
# DataLoader
# -----------------------------------------------------------------------------
_C.DATA_LOADER = CN()
# Number of data loading threads
_C.DATA_LOADER.NUM_WORKERS = 8
_C.DATA_LOADER.PIN_MEMORY = True

# ---------------------------------------------------------------------------- #
# Solver
# ---------------------------------------------------------------------------- #
_C.SOLVER = CN()
# train configs
_C.SOLVER.MAX_ITER = 120000
_C.SOLVER.LR_STEPS = [80000, 100000]
_C.SOLVER.GAMMA = 0.1
_C.SOLVER.BATCH_SIZE = 32
_C.SOLVER.LR = 1e-3
_C.SOLVER.MOMENTUM = 0.9
_C.SOLVER.WEIGHT_DECAY = 5e-4
_C.SOLVER.WARMUP_FACTOR = 1.0 / 3
_C.SOLVER.WARMUP_ITERS = 500

# ---------------------------------------------------------------------------- #
# Specific test options
# ---------------------------------------------------------------------------- #
_C.TEST = CN()
_C.TEST.NMS_THRESHOLD = 0.45
_C.TEST.CONFIDENCE_THRESHOLD = 0.01
_C.TEST.MAX_PER_CLASS = -1
_C.TEST.MAX_PER_IMAGE = 100
_C.TEST.BATCH_SIZE = 10

_C.OUTPUT_DIR = 'outputs'