MODEL_ZOO.md 39.9 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
# Benchmark and Model Zoo

## Environment

### Hardware

- 8 NVIDIA Tesla V100 GPUs
- Intel Xeon 4114 CPU @ 2.20GHz

### Software environment

Kai Chen's avatar
Kai Chen committed
12
- Python 3.6 / 3.7
Kai Chen's avatar
Kai Chen committed
13
- PyTorch 1.1
Kai Chen's avatar
Kai Chen committed
14
15
16
17
- CUDA 9.0.176
- CUDNN 7.0.4
- NCCL 2.1.15

Kai Chen's avatar
Kai Chen committed
18
19
20
## Mirror sites

We use AWS as the main site to host our model zoo, and maintain a mirror on aliyun.
Kai Chen's avatar
Kai Chen committed
21
You can replace `https://s3.ap-northeast-2.amazonaws.com/open-mmlab` with `https://open-mmlab.oss-cn-beijing.aliyuncs.com` in model urls.
Kai Chen's avatar
Kai Chen committed
22
23
24

## Common settings

myownskyW7's avatar
myownskyW7 committed
25
- All FPN baselines and RPN-C4 baselines were trained using 8 GPU with a batch size of 16 (2 images per GPU). Other C4 baselines were trained using 8 GPU with a batch size of 8 (1 image per GPU).
Kai Chen's avatar
Kai Chen committed
26
27
28
29
- All models were trained on `coco_2017_train`, and tested on the `coco_2017_val`.
- We use distributed training and BN layer stats are fixed.
- We adopt the same training schedules as Detectron. 1x indicates 12 epochs and 2x indicates 24 epochs, which corresponds to slightly less iterations than Detectron and the difference can be ignored.
- All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo.
30
31
- For fair comparison with other codebases, we report the GPU memory as the maximum value of `torch.cuda.max_memory_allocated()` for all 8 GPUs. Note that this value is usually less than what `nvidia-smi` shows.
- We report the inference time as the overall time including data loading, network forwarding and post processing.
Kai Chen's avatar
Kai Chen committed
32
33
34
35


## Baselines

36
More models with different backbones will be added to the model zoo.
Kai Chen's avatar
Kai Chen committed
37
38
39

### RPN

myownskyW7's avatar
myownskyW7 committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | AR1000 |                                                          Download                                                          |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |    -     |          -          |      20.5      |  51.1  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_caffe_c4_1x-ea7d3428.pth)       |
|     R-50-C4     |  caffe  |   2x    |   2.2    |        0.17         |      20.3      |  52.2  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_caffe_c4_2x-c6d5b958.pth)       |
|     R-50-C4     | pytorch |   1x    |    -     |          -          |      20.1      |  50.2  |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_c4_1x-eb38972b.pth)          |
|     R-50-C4     | pytorch |   2x    |    -     |          -          |      20.0      |  51.1  |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_c4_2x-3d4c1e14.pth)          |
|    R-50-FPN     |  caffe  |   1x    |   3.3    |        0.253        |      16.9      |  58.2  |                                                             -                                                              |
|    R-50-FPN     | pytorch |   1x    |   3.5    |        0.276        |      17.7      |  57.1  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_1x_20181010-4a9c0712.pth)     |
|    R-50-FPN     | pytorch |   2x    |    -     |          -          |       -        |  57.6  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_2x_20181010-88a4a471.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   5.2    |        0.379        |      13.9      |  59.4  |                                                             -                                                              |
|    R-101-FPN    | pytorch |   1x    |   5.4    |        0.396        |      14.4      |  58.6  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_1x_20181129-f50da4bd.pth)    |
|    R-101-FPN    | pytorch |   2x    |    -     |          -          |       -        |  59.1  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_2x_20181129-e42c6c9a.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   6.6    |        0.589        |      11.8      |  59.4  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_32x4d_fpn_1x_20181218-7e379d26.pth) |
| X-101-32x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  59.9  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_32x4d_fpn_2x_20181218-0510af40.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   9.5    |        0.955        |      8.3       |  59.8  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_64x4d_fpn_1x_20181218-c1a24f1f.pth) |
| X-101-64x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  60.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_64x4d_fpn_2x_20181218-c22bdd70.pth) |
Kai Chen's avatar
Kai Chen committed
56
57
58

### Faster R-CNN

myownskyW7's avatar
myownskyW7 committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                              Download                                                              |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :--------------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |    -     |          -          |      9.5       |  34.9  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_caffe_c4_1x-75ecfdfa.pth)       |
|     R-50-C4     |  caffe  |   2x    |   4.0    |        0.39         |      9.3       |  36.5  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_caffe_c4_2x-71c67f27.pth)       |
|     R-50-C4     | pytorch |   1x    |    -     |          -          |      9.3       |  33.9  |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_c4_1x-642cf91f.pth)          |
|     R-50-C4     | pytorch |   2x    |    -     |          -          |      9.4       |  35.9  |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_c4_2x-6e4fdf4f.pth)          |
|    R-50-FPN     |  caffe  |   1x    |   3.6    |        0.333        |      13.5      |  36.6  |                                                                 -                                                                  |
|    R-50-FPN     | pytorch |   1x    |   3.8    |        0.353        |      13.6      |  36.4  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth)     |
|    R-50-FPN     | pytorch |   2x    |    -     |          -          |       -        |  37.7  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_2x_20181010-443129e1.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   5.5    |        0.465        |      11.5      |  38.8  |                                                                 -                                                                  |
|    R-101-FPN    | pytorch |   1x    |   5.7    |        0.474        |      11.9      |  38.5  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_1x_20181129-d1468807.pth)    |
|    R-101-FPN    | pytorch |   2x    |    -     |          -          |       -        |  39.4  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_2x_20181129-73e7ade7.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   6.9    |        0.672        |      10.3      |  40.1  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_1x_20181218-ad81c133.pth) |
| X-101-32x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  40.4  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_2x_20181218-0ed58946.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   9.8    |        1.040        |      7.3       |  41.3  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_1x_20181218-c9c69c8f.pth) |
| X-101-64x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  40.7  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_2x_20181218-fe94f9b8.pth) |
75
76
77
78
|   HRNetV2p-W18   | pytorch |   1x    |    -     |          -          |       -        |  36.1  |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/faster_rcnn_hrnetv2p_w18_1x_20190522-e368c387.pth)    |
|   HRNetV2p-W18   | pytorch |   2x    |    -     |          -          |       -        |  38.3  |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/faster_rcnn_hrnetv2p_w18_2x_20190810-9c8615d5.pth) |
|   HRNetV2p-W32   | pytorch |   1x    |    -     |          -          |       -        |  39.5  |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/faster_rcnn_hrnetv2p_w32_1x_20190522-d22f1fef.pth)    |
|   HRNetV2p-W32   | pytorch |   2x    |    -     |          -          |       -        |  40.6  |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/faster_rcnn_hrnetv2p_w32_2x_20190810-24e8912a.pth) |
Kai Chen's avatar
Kai Chen committed
79
80
81

### Mask R-CNN

myownskyW7's avatar
myownskyW7 committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP |                                                             Download                                                             |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :-----: | :------------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |    -     |          -          |      8.1       |  35.9  |  31.5   |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_caffe_c4_1x-02a4ad3b.pth)       |
|     R-50-C4     |  caffe  |   2x    |   4.2    |        0.43         |      8.1       |  37.9  |  32.9   |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_caffe_c4_2x-d150973a.pth)       |
|     R-50-C4     | pytorch |   1x    |    -     |          -          |      7.9       |  35.1  |  31.2   |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_c4_1x-a83bdd40.pth)          |
|     R-50-C4     | pytorch |   2x    |    -     |          -          |      8.0       |  37.2  |  32.5   |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_c4_2x-3cf169a9.pth)          |
|    R-50-FPN     |  caffe  |   1x    |   3.8    |        0.430        |      10.2      |  37.4  |  34.3   |                                                                -                                                                 |
|    R-50-FPN     | pytorch |   1x    |   3.9    |        0.453        |      10.6      |  37.3  |  34.2   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth)     |
|    R-50-FPN     | pytorch |   2x    |    -     |          -          |       -        |  38.5  |  35.1   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   5.7    |        0.534        |      9.4       |  39.9  |  36.1   |                                                                -                                                                 |
|    R-101-FPN    | pytorch |   1x    |   5.8    |        0.571        |      9.5       |  39.4  |  35.9   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_1x_20181129-34ad1961.pth)    |
|    R-101-FPN    | pytorch |   2x    |    -     |          -          |       -        |  40.3  |  36.5   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_2x_20181129-a254bdfc.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   7.1    |        0.759        |      8.3       |  41.1  |  37.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_1x_20181218-44e635cc.pth) |
| X-101-32x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  41.4  |  37.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_2x_20181218-f023dffa.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   10.0   |        1.102        |      6.5       |  42.1  |  38.0   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_1x_20181218-cb159987.pth) |
| X-101-64x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  42.0  |  37.7   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_2x_20181218-ea936e44.pth) |
98
99
100
101
|   HRNetV2p-W18   | pytorch |   1x    |    -     |          -          |       -        |  37.3  |  34.2   |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/mask_rcnn_hrnetv2p_w18_1x_20190522-c8ad459f.pth)    |
|   HRNetV2p-W18   | pytorch |   2x    |    -     |          -          |       -        |  39.2  |  35.7   |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/mask_rcnn_hrnetv2p_w18_2x_20190810-1e4747eb.pth)   |
|   HRNetV2p-W32   | pytorch |   1x    |    -     |          -          |       -        |  40.7  |  36.8   |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/mask_rcnn_hrnetv2p_w32_1x_20190522-374aaa00.pth)    |
|   HRNetV2p-W32   | pytorch |   2x    |    -     |          -          |       -        |  41.7  |  37.5   |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/mask_rcnn_hrnetv2p_w32_2x_20190810-773eca75.pth) |
Kai Chen's avatar
Kai Chen committed
102

Kai Chen's avatar
Kai Chen committed
103
### Fast R-CNN (with pre-computed proposals)
Kai Chen's avatar
Kai Chen committed
104

myownskyW7's avatar
myownskyW7 committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
| Backbone  |  Style  |  Type  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP |                                                            Download                                                             |
| :-------: | :-----: | :----: | :-----: | :------: | :-----------------: | :------------: | :----: | :-----: | :-----------------------------------------------------------------------------------------------------------------------------: |
|  R-50-C4  |  caffe  | Faster |   1x    |    -     |          -          |      6.7       |  35.0  |    -    |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_caffe_c4_1x-0ef9a60b.pth)      |
|  R-50-C4  |  caffe  | Faster |   2x    |   3.8    |        0.34         |      6.6       |  36.4  |    -    |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_c4_2x-657a9fc6.pth)         |
|  R-50-C4  | pytorch | Faster |   1x    |    -     |          -          |      6.3       |  34.2  |    -    |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_c4_1x-2bc00ca9.pth)         |
|  R-50-C4  | pytorch | Faster |   2x    |    -     |          -          |      6.1       |  35.8  |    -    |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_caffe_c4_2x-9171d0fc.pth)      |
| R-50-FPN  |  caffe  | Faster |   1x    |   3.3    |        0.242        |      18.4      |  36.6  |    -    |                                                                -                                                                |
| R-50-FPN  | pytorch | Faster |   1x    |   3.5    |        0.250        |      16.5      |  35.8  |    -    |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_1x_20181010-08160859.pth)    |
|  R-50-C4  |  caffe  |  Mask  |   1x    |    -     |          -          |      8.1       |  35.9  |  31.5   |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_caffe_c4_1x-b43f7f3c.pth)    |
|  R-50-C4  |  caffe  |  Mask  |   2x    |   4.2    |        0.43         |      8.1       |  37.9  |  32.9   |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_caffe_c4_2x-e3580184.pth)    |
|  R-50-C4  | pytorch |  Mask  |   1x    |    -     |          -          |      7.9       |  35.1  |  31.2   |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_c4_1x-bc7fa8c8.pth)       |
|  R-50-C4  | pytorch |  Mask  |   2x    |    -     |          -          |      8.0       |  37.2  |  32.5   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010-5048cb03.pth)  |
| R-50-FPN  | pytorch | Faster |   2x    |    -     |          -          |       -        |  37.1  |    -    |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_2x_20181010-d263ada5.pth)    |
| R-101-FPN |  caffe  | Faster |   1x    |   5.2    |        0.355        |      14.4      |  38.6  |    -    |                                                                -                                                                |
| R-101-FPN | pytorch | Faster |   1x    |   5.4    |        0.388        |      13.2      |  38.1  |    -    |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_1x_20181129-ffaa2eb0.pth)    |
| R-101-FPN | pytorch | Faster |   2x    |    -     |          -          |       -        |  38.8  |    -    |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_2x_20181129-9dba92ce.pth)    |
| R-50-FPN  |  caffe  |  Mask  |   1x    |   3.4    |        0.328        |      12.8      |  37.3  |  34.5   |                                                                -                                                                |
| R-50-FPN  | pytorch |  Mask  |   1x    |   3.5    |        0.346        |      12.7      |  36.8  |  34.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_1x_20181010-e030a38f.pth)  |
| R-50-FPN  | pytorch |  Mask  |   2x    |    -     |          -          |       -        |  37.9  |  34.8   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010-5048cb03.pth)  |
| R-101-FPN |  caffe  |  Mask  |   1x    |   5.2    |        0.429        |      11.2      |  39.4  |  36.1   |                                                                -                                                                |
| R-101-FPN | pytorch |  Mask  |   1x    |   5.4    |        0.462        |      10.9      |  38.9  |  35.8   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_1x_20181129-2273fa9b.pth) |
| R-101-FPN | pytorch |  Mask  |   2x    |    -     |          -          |       -        |  39.9  |  36.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_2x_20181129-bf63ec5e.pth) |
Kai Chen's avatar
Kai Chen committed
127

Kai Chen's avatar
Kai Chen committed
128
### RetinaNet
Kai Chen's avatar
Kai Chen committed
129

myownskyW7's avatar
myownskyW7 committed
130
131
132
133
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                             Download                                                             |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :------------------------------------------------------------------------------------------------------------------------------: |
|    R-50-FPN     |  caffe  |   1x    |   3.4    |        0.285        |      12.5      |  35.8  |                                                                -                                                                 |
|    R-50-FPN     | pytorch |   1x    |   3.6    |        0.308        |      12.1      |  35.6  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_1x_20181125-7b0c2548.pth)     |
Cao Yuhang's avatar
Cao Yuhang committed
134
|    R-50-FPN     | pytorch |   2x    |    -     |          -          |       -        |  36.4  |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/retinanet_r50_fpn_2x_20190616-75574209.pth)     |
myownskyW7's avatar
myownskyW7 committed
135
136
137
138
139
140
141
|    R-101-FPN    |  caffe  |   1x    |   5.3    |        0.410        |      10.4      |  37.8  |                                                                -                                                                 |
|    R-101-FPN    | pytorch |   1x    |   5.5    |        0.429        |      10.9      |  37.7  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_1x_20181129-f016f384.pth)    |
|    R-101-FPN    | pytorch |   2x    |    -     |          -          |       -        |  38.1  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_2x_20181129-72c14526.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   6.7    |        0.632        |      9.3       |  39.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_32x4d_fpn_1x_20190501-967812ba.pth) |
| X-101-32x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  39.3  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_32x4d_fpn_2x_20181218-8596452d.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   9.6    |        0.993        |      7.0       |  40.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_64x4d_fpn_1x_20181218-a0a22662.pth) |
| X-101-64x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  39.6  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_64x4d_fpn_2x_20181218-5e88d045.pth) |
Kai Chen's avatar
Kai Chen committed
142

Kai Chen's avatar
Kai Chen committed
143
144
### Cascade R-CNN

myownskyW7's avatar
myownskyW7 committed
145
146
147
148
149
150
151
152
153
154
155
156
157
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                              Download                                                               |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :---------------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |   8.7    |        0.92         |      5.0       |  38.7  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_caffe_c4_1x-7c85c62b.pth)       |
|    R-50-FPN     |  caffe  |   1x    |   3.9    |        0.464        |      10.9      |  40.5  |                                                                  -                                                                  |
|    R-50-FPN     | pytorch |   1x    |   4.1    |        0.455        |      11.9      |  40.4  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_1x_20190501-3b6211ab.pth)     |
|    R-50-FPN     | pytorch |   20e   |    -     |          -          |       -        |  41.1  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_20e_20181123-db483a09.pth)    |
|    R-101-FPN    |  caffe  |   1x    |   5.8    |        0.569        |      9.6       |  42.4  |                                                                  -                                                                  |
|    R-101-FPN    | pytorch |   1x    |   6.0    |        0.584        |      10.3      |  42.0  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_1x_20181129-d64ebac7.pth)    |
|    R-101-FPN    | pytorch |   20e   |    -     |          -          |       -        |  42.5  |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_20e_20181129-b46dcede.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   7.2    |        0.770        |      8.9       |  43.6  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_1x_20190501-af628be5.pth) |
| X-101-32x4d-FPN | pytorch |   20e   |    -     |          -          |       -        |  44.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_2x_20181218-28f73c4c.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   10.0   |        1.133        |      6.7       |  44.5  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_1x_20181218-e2dc376a.pth) |
| X-101-64x4d-FPN | pytorch |   20e   |    -     |          -          |       -        |  44.7  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_2x_20181218-5add321e.pth) |
158
159
160
|   HRNetV2p-W18   | pytorch |   20e   |    -     |          -          |       -        |  41.2  | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/cascade_rcnn_hrnetv2p_w18_20e_20190810-132012d0.pth) |
|   HRNetV2p-W32   | pytorch |   20e   |    -     |          -          |       -        |  43.7  | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/cascade_rcnn_hrnetv2p_w32_20e_20190522-55bec4ee.pth)|
|   HRNetV2p-W48   | pytorch |   20e   |    -     |          -          |       -        |  44.6  | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/cascade_rcnn_hrnetv2p_w48_20e_20190810-f40ed8e1.pth) |
Kai Chen's avatar
Kai Chen committed
161
162
163

### Cascade Mask R-CNN

myownskyW7's avatar
myownskyW7 committed
164
165
166
167
168
169
170
171
172
173
174
175
176
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP |                                                                 Download                                                                  |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :-----: | :---------------------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |   9.1    |        0.99         |      4.5       |  39.3  |  32.8   |       [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_caffe_c4_1x-f72cc254.pth)       |
|    R-50-FPN     |  caffe  |   1x    |   5.1    |        0.692        |      7.6       |  40.9  |  35.5   |                                                                     -                                                                     |
|    R-50-FPN     | pytorch |   1x    |   5.3    |        0.683        |      7.4       |  41.2  |  35.7   |     [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_1x_20181123-88b170c9.pth)     |
|    R-50-FPN     | pytorch |   20e   |    -     |          -          |       -        |  42.3  |  36.6   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_20e_20181123-6e0c9713.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   7.0    |        0.803        |      7.2       |  43.1  |  37.2   |                                                                     -                                                                     |
|    R-101-FPN    | pytorch |   1x    |   7.2    |        0.807        |      6.8       |  42.6  |  37.0   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_1x_20181129-64f00602.pth)     |
|    R-101-FPN    | pytorch |   20e   |    -     |          -          |       -        |  43.3  |  37.6   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_20e_20181129-cb85151d.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   8.4    |        0.976        |      6.6       |  44.4  |  38.2   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_1x_20181218-1d944c89.pth)  |
| X-101-32x4d-FPN | pytorch |   20e   |    -     |          -          |       -        |  44.7  |  38.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_20e_20181218-761a3473.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   11.4   |        1.33         |      5.3       |  45.4  |  39.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_1x_20190501-827e0a70.pth)  |
| X-101-64x4d-FPN | pytorch |   20e   |    -     |          -          |       -        |  45.7  |  39.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_20e_20181218-630773a7.pth) |
177
178
179
|   HRNetV2p-W18   | pytorch |   20e   |    -     |          -          |       -        |  41.9  |  36.4   | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_20190810-054fb7bf.pth) |
|   HRNetV2p-W32   | pytorch |   20e   |    -     |          -          |       -        |  44.5  |  38.5   | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_20190810-76f61cd0.pth) |
|   HRNetV2p-W48   | pytorch |   20e   |    -     |          -          |       -        |  46.0  |  39.5   | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/cascade_mask_rcnn_hrnetv2p_w48_20e_20190810-d04a1415.pth) |
Kai Chen's avatar
Kai Chen committed
180

pangjm's avatar
pangjm committed
181
182
**Notes:**

Kai Chen's avatar
Kai Chen committed
183
- The `20e` schedule in Cascade (Mask) R-CNN indicates decreasing the lr at 16 and 19 epochs, with a total of 20 epochs.
Kai Chen's avatar
Kai Chen committed
184

185
186
### Hybrid Task Cascade (HTC)

myownskyW7's avatar
myownskyW7 committed
187
188
|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP |                                                            Download                                                             |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :-----: | :-----------------------------------------------------------------------------------------------------------------------------: |
189
|    R-50-FPN     | pytorch |   1x    |   7.4    |        0.936        |      4.1       |  42.1  |  37.3   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_1x_20190408-878c1712.pth)     |
myownskyW7's avatar
myownskyW7 committed
190
|    R-50-FPN     | pytorch |   20e   |    -     |          -          |       -        |  43.2  |  38.1   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_20e_20190408-c03b7015.pth)     |
191
|    R-101-FPN    | pytorch |   20e   |   9.3    |        1.051        |      4.0       |  44.9  |  39.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r101_fpn_20e_20190408-a2e586db.pth)    |
myownskyW7's avatar
myownskyW7 committed
192
193
| X-101-32x4d-FPN | pytorch |   20e   |   5.8    |        0.769        |      3.8       |  46.1  |  40.3   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_32x4d_fpn_20e_20190408-9eae4d0b.pth) |
| X-101-64x4d-FPN | pytorch |   20e   |   7.5    |        1.120        |      3.5       |  46.9  |  40.8   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_64x4d_fpn_20e_20190408-497f2561.pth) |
194
195
196
|   HRNetV2p-W18   | pytorch |   20e   |    -     |          -          |       -        |  43.1  |  37.9   | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/htc_hrnetv2p_w18_20e_20190810-d70072af.pth) |
|   HRNetV2p-W32   | pytorch |   20e   |    -     |          -          |       -        |  45.3  |  39.6   | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/htc_hrnetv2p_w32_20e_20190810-82f9ef5a.pth) |
|   HRNetV2p-W48   | pytorch |   20e   |    -     |          -          |       -        |  46.8  | 40.7    | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/htc_hrnetv2p_w48_20e_20190810-f6d2c3fd.pth) |
Kai Chen's avatar
Kai Chen committed
197
198
199

**Notes:**

200
- Please refer to [Hybrid Task Cascade](../configs/htc/README.md) for details and more a powerful model (50.7/43.9).
201

Kai Chen's avatar
Kai Chen committed
202
203
### SSD

myownskyW7's avatar
myownskyW7 committed
204
205
206
207
| Backbone | Size  | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                             Download                                                              |
| :------: | :---: | :---: | :-----: | :------: | :-----------------: | :------------: | :----: | :-------------------------------------------------------------------------------------------------------------------------------: |
|  VGG16   |  300  | caffe |  120e   |   3.5    |        0.256        |  25.9 / 34.6   |  25.7  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_coco_vgg16_caffe_120e_20181221-84d7110b.pth) |
|  VGG16   |  512  | caffe |  120e   |   7.6    |        0.412        |  20.7 / 25.4   |  29.3  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd512_coco_vgg16_caffe_120e_20181221-d48b0be8.pth) |
Kai Chen's avatar
Kai Chen committed
208
209
210
211
212

**Notes:**

- `cudnn.benchmark` is set as `True` for SSD training and testing.
- Inference time is reported for batch size = 1 and batch size = 8.
Kai Chen's avatar
Kai Chen committed
213
- The speed on COCO and VOC are different due to model parameters and nms.
Kai Chen's avatar
Kai Chen committed
214

Kai Chen's avatar
Kai Chen committed
215
216
### Group Normalization (GN)

217
Please refer to [Group Normalization](../configs/gn/README.md) for details.
Kai Chen's avatar
Kai Chen committed
218

Kai Chen's avatar
Kai Chen committed
219
### Weight Standardization
Kai Chen's avatar
Kai Chen committed
220

221
Please refer to [Weight Standardization](../configs/gn+ws/README.md) for details.
Kai Chen's avatar
Kai Chen committed
222

Kai Chen's avatar
Kai Chen committed
223
### Deformable Convolution v2
Kai Chen's avatar
Kai Chen committed
224

225
Please refer to [Deformable Convolutional Networks](../configs/dcn/README.md) for details.
Kai Chen's avatar
Kai Chen committed
226

227
228
### Libra R-CNN

229
Please refer to [Libra R-CNN](../configs/libra_rcnn/README.md) for details.
230

231
232
### Guided Anchoring

233
Please refer to [Guided Anchoring](../configs/guided_anchoring/README.md) for details.
234

Kai Chen's avatar
Kai Chen committed
235
236
### FCOS

237
Please refer to [FCOS](../configs/fcos/README.md) for details.
Kai Chen's avatar
Kai Chen committed
238
239
240

### Grid R-CNN (plus)

241
Please refer to [Grid R-CNN](../configs/grid_rcnn/README.md) for details.
Kai Chen's avatar
Kai Chen committed
242
243
244

### GHM

245
Please refer to [GHM](../configs/ghm/README.md) for details.
Kai Chen's avatar
Kai Chen committed
246
247
248

### GCNet

249
Please refer to [GCNet](../configs/gcnet/README.md) for details.
Kai Chen's avatar
Kai Chen committed
250
251

### HRNet
252
Please refer to [HRNet](../configs/hrnet/README.md) for details.
Kai Chen's avatar
Kai Chen committed
253
254
255

### Mask Scoring R-CNN

256
Please refer to [Mask Scoring R-CNN](../configs/ms_rcnn/README.md) for details.
Kai Chen's avatar
Kai Chen committed
257
258
259

### Train from Scratch

260
Please refer to [Rethinking ImageNet Pre-training](../configs/scratch/README.md) for details.
Kai Chen's avatar
Kai Chen committed
261
262
263

### Other datasets

264
We also benchmark some methods on [PASCAL VOC](../configs/pascal_voc/README.md), [Cityscapes](../configs/cityscapes/README.md) and [WIDER FACE](../configs/wider_face/README.md).
Kai Chen's avatar
Kai Chen committed
265
266


267
## Comparison with Detectron and maskrcnn-benchmark
Kai Chen's avatar
Kai Chen committed
268
269

We compare mmdetection with [Detectron](https://github.com/facebookresearch/Detectron)
270
and [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark). The backbone used is R-50-FPN.
Kai Chen's avatar
Kai Chen committed
271

Kai Chen's avatar
Kai Chen committed
272
273
274
275
276
277
In general, mmdetection has 3 advantages over Detectron.

- **Higher performance** (especially in terms of mask AP)
- **Faster training speed**
- **Memory efficient**

Kai Chen's avatar
Kai Chen committed
278
279
### Performance

280
Detectron and maskrcnn-benchmark use caffe-style ResNet as the backbone.
Kai Chen's avatar
Kai Chen committed
281
282
283
284
285
We report results using both caffe-style (weights converted from
[here](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#imagenet-pretrained-models))
and pytorch-style (weights from the official model zoo) ResNet backbone,
indicated as *pytorch-style results* / *caffe-style results*.

286
287
288
289
We find that pytorch-style ResNet usually converges slower than caffe-style ResNet,
thus leading to slightly lower results in 1x schedule, but the final results
of 2x schedule is higher.

Kai Chen's avatar
Kai Chen committed
290
291
292
293
294
<table>
  <tr>
    <th>Type</th>
    <th>Lr schd</th>
    <th>Detectron</th>
295
    <th>maskrcnn-benchmark</th>
Kai Chen's avatar
Kai Chen committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    <th>mmdetection</th>
  </tr>
  <tr>
    <td rowspan="2">RPN</td>
    <td>1x</td>
    <td>57.2</td>
    <td>-</td>
    <td>57.1 / 58.2</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>-</td>
    <td>-</td>
    <td>57.6 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Faster R-CNN</td>
    <td>1x</td>
    <td>36.7</td>
315
    <td>36.8</td>
316
    <td>36.4 / 36.6</td>
Kai Chen's avatar
Kai Chen committed
317
318
319
320
321
322
323
324
325
326
327
  </tr>
  <tr>
    <td>2x</td>
    <td>37.9</td>
    <td>-</td>
    <td>37.7 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Mask R-CNN</td>
    <td>1x</td>
    <td>37.7 &amp; 33.9</td>
328
    <td>37.8 &amp; 34.2</td>
329
    <td>37.3 &amp; 34.2 / 37.4 &amp; 34.3</td>
Kai Chen's avatar
Kai Chen committed
330
331
332
333
334
  </tr>
  <tr>
    <td>2x</td>
    <td>38.6 &amp; 34.5</td>
    <td>-</td>
335
    <td>38.5 &amp; 35.1 / -</td>
Kai Chen's avatar
Kai Chen committed
336
  </tr>
Kai Chen's avatar
Kai Chen committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
  <tr>
    <td rowspan="2">Fast R-CNN</td>
    <td>1x</td>
    <td>36.4</td>
    <td>-</td>
    <td>35.8 / 36.6</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>36.8</td>
    <td>-</td>
    <td>37.1 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Fast R-CNN (w/mask)</td>
    <td>1x</td>
    <td>37.3 &amp; 33.7</td>
    <td>-</td>
    <td>36.8 &amp; 34.1 / 37.3 &amp; 34.5</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>37.7 &amp; 34.0</td>
    <td>-</td>
    <td>37.9 &amp; 34.8 / -</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
363
364
</table>

Kai Chen's avatar
Kai Chen committed
365
### Training Speed
Kai Chen's avatar
Kai Chen committed
366

Kai Chen's avatar
Kai Chen committed
367
The training speed is measure with s/iter. The lower, the better.
Kai Chen's avatar
Kai Chen committed
368
369
370
371
372

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100<sup>1</sup>)</th>
373
374
    <th>maskrcnn-benchmark (V100)</th>
    <th>mmdetection (V100<sup>2</sup>)</th>
Kai Chen's avatar
Kai Chen committed
375
376
377
378
379
  </tr>
  <tr>
    <td>RPN</td>
    <td>0.416</td>
    <td>-</td>
380
    <td>0.253</td>
Kai Chen's avatar
Kai Chen committed
381
382
383
384
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>0.544</td>
385
386
    <td>0.353</td>
    <td>0.333</td>
Kai Chen's avatar
Kai Chen committed
387
388
389
390
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>0.889</td>
391
392
    <td>0.454</td>
    <td>0.430</td>
Kai Chen's avatar
Kai Chen committed
393
  </tr>
Kai Chen's avatar
Kai Chen committed
394
395
396
397
  <tr>
    <td>Fast R-CNN</td>
    <td>0.285</td>
    <td>-</td>
398
    <td>0.242</td>
Kai Chen's avatar
Kai Chen committed
399
400
401
402
403
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>0.377</td>
    <td>-</td>
404
    <td>0.328</td>
Kai Chen's avatar
Kai Chen committed
405
  </tr>
Kai Chen's avatar
Kai Chen committed
406
407
</table>

408
\*1. Facebook's Big Basin servers (P100/V100) is slightly faster than the servers we use. mmdetection can also run slightly faster on FB's servers.
Kai Chen's avatar
Kai Chen committed
409

410
\*2. For fair comparison, we list the caffe-style results here.
Kai Chen's avatar
Kai Chen committed
411

Kai Chen's avatar
Kai Chen committed
412
413
414
415
416
417
418
419
420

### Inference Speed

The inference speed is measured with fps (img/s) on a single GPU. The higher, the better.

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100)</th>
421
422
    <th>maskrcnn-benchmark (V100)</th>
    <th>mmdetection (V100)</th>
Kai Chen's avatar
Kai Chen committed
423
424
425
426
427
  </tr>
  <tr>
    <td>RPN</td>
    <td>12.5</td>
    <td>-</td>
428
    <td>16.9</td>
Kai Chen's avatar
Kai Chen committed
429
430
431
432
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>10.3</td>
433
    <td>7.9</td>
434
    <td>13.5</td>
Kai Chen's avatar
Kai Chen committed
435
436
437
438
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>8.5</td>
439
    <td>7.7</td>
440
    <td>10.2</td>
Kai Chen's avatar
Kai Chen committed
441
  </tr>
Kai Chen's avatar
Kai Chen committed
442
443
444
  <tr>
    <td>Fast R-CNN</td>
    <td>12.5</td>
445
446
    <td>-</td>
    <td>18.4</td>
Kai Chen's avatar
Kai Chen committed
447
448
449
450
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>9.9</td>
451
452
    <td>-</td>
    <td>12.8</td>
Kai Chen's avatar
Kai Chen committed
453
  </tr>
Kai Chen's avatar
Kai Chen committed
454
455
</table>

Kai Chen's avatar
Kai Chen committed
456
457
### Training memory

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
<table>
  <tr>
    <th>Type</th>
    <th>Detectron</th>
    <th>maskrcnn-benchmark</th>
    <th>mmdetection</th>
  </tr>
  <tr>
    <td>RPN</td>
    <td>6.4</td>
    <td>-</td>
    <td>3.3</td>
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>7.2</td>
    <td>4.4</td>
    <td>3.6</td>
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>8.6</td>
    <td>5.2</td>
    <td>3.8</td>
  </tr>
  <tr>
    <td>Fast R-CNN</td>
    <td>6.0</td>
    <td>-</td>
    <td>3.3</td>
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>7.9</td>
    <td>-</td>
    <td>3.4</td>
  </tr>
</table>

There is no doubt that maskrcnn-benchmark and mmdetection is more memory efficient than Detectron,
and the main advantage is PyTorch itself. We also perform some memory optimizations to push it forward.

Note that Caffe2 and PyTorch have different apis to obtain memory usage with different implementations.
For all codebases, `nvidia-smi` shows a larger memory usage than the reported number in the above table.