train.py 3.69 KB
Newer Older
myownskyW7's avatar
myownskyW7 committed
1
2
3
4
5
6
7
8
from __future__ import division

from collections import OrderedDict

import torch
from mmcv.runner import Runner, DistSamplerSeedHook
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel

Kai Chen's avatar
Kai Chen committed
9
from mmdet.core import (DistOptimizerHook, CocoDistEvalRecallHook,
myownskyW7's avatar
myownskyW7 committed
10
11
12
                        CocoDistEvalmAPHook)
from mmdet.datasets import build_dataloader
from mmdet.models import RPN
Kai Chen's avatar
Kai Chen committed
13
from .env import get_root_logger
myownskyW7's avatar
myownskyW7 committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


def parse_losses(losses):
    log_vars = OrderedDict()
    for loss_name, loss_value in losses.items():
        if isinstance(loss_value, torch.Tensor):
            log_vars[loss_name] = loss_value.mean()
        elif isinstance(loss_value, list):
            log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
        else:
            raise TypeError(
                '{} is not a tensor or list of tensors'.format(loss_name))

    loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)

    log_vars['loss'] = loss
    for name in log_vars:
        log_vars[name] = log_vars[name].item()

    return loss, log_vars


def batch_processor(model, data, train_mode):
    losses = model(**data)
    loss, log_vars = parse_losses(losses)

    outputs = dict(
        loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))

    return outputs


Kai Chen's avatar
Kai Chen committed
46
47
48
49
50
51
52
53
def train_detector(model,
                   dataset,
                   cfg,
                   distributed=False,
                   validate=False,
                   logger=None):
    if logger is None:
        logger = get_root_logger(cfg.log_level)
myownskyW7's avatar
myownskyW7 committed
54

Kai Chen's avatar
Kai Chen committed
55
56
57
    # start training
    if distributed:
        _dist_train(model, dataset, cfg, validate=validate)
myownskyW7's avatar
myownskyW7 committed
58
    else:
Kai Chen's avatar
Kai Chen committed
59
        _non_dist_train(model, dataset, cfg, validate=validate)
myownskyW7's avatar
myownskyW7 committed
60

Kai Chen's avatar
Kai Chen committed
61
62

def _dist_train(model, dataset, cfg, validate=False):
myownskyW7's avatar
myownskyW7 committed
63
64
    # prepare data loaders
    data_loaders = [
Kai Chen's avatar
Kai Chen committed
65
66
67
68
69
        build_dataloader(
            dataset,
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            dist=True)
myownskyW7's avatar
myownskyW7 committed
70
71
    ]
    # put model on gpus
Kai Chen's avatar
Kai Chen committed
72
    model = MMDistributedDataParallel(model.cuda())
myownskyW7's avatar
myownskyW7 committed
73
74
75
76
    # build runner
    runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir,
                    cfg.log_level)
    # register hooks
Kai Chen's avatar
Kai Chen committed
77
    optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
myownskyW7's avatar
myownskyW7 committed
78
79
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
Kai Chen's avatar
Kai Chen committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
        if isinstance(model.module, RPN):
            runner.register_hook(CocoDistEvalRecallHook(cfg.data.val))
        elif cfg.data.val.type == 'CocoDataset':
            runner.register_hook(CocoDistEvalmAPHook(cfg.data.val))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)


def _non_dist_train(model, dataset, cfg, validate=False):
    # prepare data loaders
    data_loaders = [
        build_dataloader(
            dataset,
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            cfg.gpus,
            dist=False)
    ]
    # put model on gpus
    model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
    # build runner
    runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir,
                    cfg.log_level)
    runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
myownskyW7's avatar
myownskyW7 committed
112
113
114
115
116

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
myownskyW7's avatar
myownskyW7 committed
117
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)