train.py 2.56 KB
Newer Older
pangjm's avatar
pangjm committed
1
from __future__ import division
Kai Chen's avatar
Kai Chen committed
2

pangjm's avatar
pangjm committed
3
4
import argparse
from mmcv import Config
5

6
7
from mmdet import __version__
from mmdet.datasets import get_dataset
Kai Chen's avatar
Kai Chen committed
8
9
from mmdet.apis import (train_detector, init_dist, get_root_logger,
                        set_random_seed)
myownskyW7's avatar
myownskyW7 committed
10
from mmdet.models import build_detector
Kai Chen's avatar
Kai Chen committed
11
12


pangjm's avatar
pangjm committed
13
def parse_args():
Kai Chen's avatar
Kai Chen committed
14
    parser = argparse.ArgumentParser(description='Train a detector')
pangjm's avatar
pangjm committed
15
    parser.add_argument('config', help='train config file path')
16
    parser.add_argument('--work_dir', help='the dir to save logs and models')
pangjm's avatar
pangjm committed
17
    parser.add_argument('--resume_from', help='the checkpoint file to resume from')
pangjm's avatar
pangjm committed
18
    parser.add_argument(
Kai Chen's avatar
Kai Chen committed
19
20
        '--validate',
        action='store_true',
Kai Chen's avatar
Kai Chen committed
21
        help='whether to evaluate the checkpoint during training')
Kai Chen's avatar
Kai Chen committed
22
    parser.add_argument(
Kai Chen's avatar
Kai Chen committed
23
24
25
26
27
28
        '--gpus',
        type=int,
        default=1,
        help='number of gpus to use '
        '(only applicable to non-distributed training)')
    parser.add_argument('--seed', type=int, default=None, help='random seed')
29
30
31
32
33
34
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
pangjm's avatar
pangjm committed
35
36
37
38
39
40
    args = parser.parse_args()

    return args


def main():
41
    args = parse_args()
Kai Chen's avatar
Kai Chen committed
42

Kai Chen's avatar
Kai Chen committed
43
    cfg = Config.fromfile(args.config)
Kai Chen's avatar
Kai Chen committed
44
    # update configs according to CLI args
45
46
    if args.work_dir is not None:
        cfg.work_dir = args.work_dir
pangjm's avatar
pangjm committed
47
48
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
49
    cfg.gpus = args.gpus
Kai Chen's avatar
Kai Chen committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    if cfg.checkpoint_config is not None:
        # save mmdet version in checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
            mmdet_version=__version__, config=cfg.text)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # init logger before other steps
    logger = get_root_logger(cfg.log_level)
    logger.info('Distributed training: {}'.format(distributed))

    # set random seeds
    if args.seed is not None:
        logger.info('Set random seed to {}'.format(args.seed))
        set_random_seed(args.seed)

Kai Chen's avatar
Kai Chen committed
71
72
    model = build_detector(
        cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
pangjm's avatar
pangjm committed
73

74
    train_dataset = get_dataset(cfg.data.train)
Kai Chen's avatar
Kai Chen committed
75
76
77
78
79
80
81
    train_detector(
        model,
        train_dataset,
        cfg,
        distributed=distributed,
        validate=args.validate,
        logger=logger)
pangjm's avatar
pangjm committed
82
83


Kai Chen's avatar
Kai Chen committed
84
if __name__ == '__main__':
pangjm's avatar
pangjm committed
85
    main()