train.py 3.86 KB
Newer Older
myownskyW7's avatar
myownskyW7 committed
1
2
3
4
5
6
7
8
9
10
from __future__ import division

import random
from collections import OrderedDict

import numpy as np
import torch
from mmcv.runner import Runner, DistSamplerSeedHook
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel

Kai Chen's avatar
Kai Chen committed
11
from mmdet.core import (DistOptimizerHook, CocoDistEvalRecallHook,
myownskyW7's avatar
myownskyW7 committed
12
13
14
                        CocoDistEvalmAPHook)
from mmdet.datasets import build_dataloader
from mmdet.models import RPN
Kai Chen's avatar
Kai Chen committed
15
from .env import get_root_logger
myownskyW7's avatar
myownskyW7 committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54


def parse_losses(losses):
    log_vars = OrderedDict()
    for loss_name, loss_value in losses.items():
        if isinstance(loss_value, torch.Tensor):
            log_vars[loss_name] = loss_value.mean()
        elif isinstance(loss_value, list):
            log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
        else:
            raise TypeError(
                '{} is not a tensor or list of tensors'.format(loss_name))

    loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)

    log_vars['loss'] = loss
    for name in log_vars:
        log_vars[name] = log_vars[name].item()

    return loss, log_vars


def batch_processor(model, data, train_mode):
    losses = model(**data)
    loss, log_vars = parse_losses(losses)

    outputs = dict(
        loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))

    return outputs


def set_random_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


Kai Chen's avatar
Kai Chen committed
55
56
57
58
59
60
61
62
def train_detector(model,
                   dataset,
                   cfg,
                   distributed=False,
                   validate=False,
                   logger=None):
    if logger is None:
        logger = get_root_logger(cfg.log_level)
myownskyW7's avatar
myownskyW7 committed
63

Kai Chen's avatar
Kai Chen committed
64
65
66
    # start training
    if distributed:
        _dist_train(model, dataset, cfg, validate=validate)
myownskyW7's avatar
myownskyW7 committed
67
    else:
Kai Chen's avatar
Kai Chen committed
68
        _non_dist_train(model, dataset, cfg, validate=validate)
myownskyW7's avatar
myownskyW7 committed
69

Kai Chen's avatar
Kai Chen committed
70
71

def _dist_train(model, dataset, cfg, validate=False):
myownskyW7's avatar
myownskyW7 committed
72
73
    # prepare data loaders
    data_loaders = [
Kai Chen's avatar
Kai Chen committed
74
75
76
77
78
        build_dataloader(
            dataset,
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            dist=True)
myownskyW7's avatar
myownskyW7 committed
79
80
    ]
    # put model on gpus
Kai Chen's avatar
Kai Chen committed
81
    model = MMDistributedDataParallel(model.cuda())
myownskyW7's avatar
myownskyW7 committed
82
83
84
85
    # build runner
    runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir,
                    cfg.log_level)
    # register hooks
Kai Chen's avatar
Kai Chen committed
86
    optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
myownskyW7's avatar
myownskyW7 committed
87
88
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
Kai Chen's avatar
Kai Chen committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
        if isinstance(model.module, RPN):
            runner.register_hook(CocoDistEvalRecallHook(cfg.data.val))
        elif cfg.data.val.type == 'CocoDataset':
            runner.register_hook(CocoDistEvalmAPHook(cfg.data.val))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)


def _non_dist_train(model, dataset, cfg, validate=False):
    # prepare data loaders
    data_loaders = [
        build_dataloader(
            dataset,
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            cfg.gpus,
            dist=False)
    ]
    # put model on gpus
    model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
    # build runner
    runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir,
                    cfg.log_level)
    runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
myownskyW7's avatar
myownskyW7 committed
121
122
123
124
125

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
myownskyW7's avatar
myownskyW7 committed
126
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)