bbox_head.py 8.05 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
import torch
Kai Chen's avatar
Kai Chen committed
2
3
import torch.nn as nn
import torch.nn.functional as F
Cao Yuhang's avatar
Cao Yuhang committed
4

Kai Chen's avatar
Kai Chen committed
5
from mmdet.core import delta2bbox, multiclass_nms, bbox_target
Jiangmiao Pang's avatar
Jiangmiao Pang committed
6
from ..builder import build_loss
Kai Chen's avatar
Kai Chen committed
7
from ..losses import accuracy
Kai Chen's avatar
Kai Chen committed
8
from ..registry import HEADS
Kai Chen's avatar
Kai Chen committed
9
10


Kai Chen's avatar
Kai Chen committed
11
@HEADS.register_module
Kai Chen's avatar
Kai Chen committed
12
13
14
15
16
17
18
19
20
21
22
23
24
class BBoxHead(nn.Module):
    """Simplest RoI head, with only two fc layers for classification and
    regression respectively"""

    def __init__(self,
                 with_avg_pool=False,
                 with_cls=True,
                 with_reg=True,
                 roi_feat_size=7,
                 in_channels=256,
                 num_classes=81,
                 target_means=[0., 0., 0., 0.],
                 target_stds=[0.1, 0.1, 0.2, 0.2],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
25
26
27
28
29
30
31
                 reg_class_agnostic=False,
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0, loss_weight=1.0)):
Kai Chen's avatar
Kai Chen committed
32
33
34
35
36
37
38
39
40
41
42
43
        super(BBoxHead, self).__init__()
        assert with_cls or with_reg
        self.with_avg_pool = with_avg_pool
        self.with_cls = with_cls
        self.with_reg = with_reg
        self.roi_feat_size = roi_feat_size
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.target_means = target_means
        self.target_stds = target_stds
        self.reg_class_agnostic = reg_class_agnostic

Jiangmiao Pang's avatar
Jiangmiao Pang committed
44
45
46
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)

Kai Chen's avatar
Kai Chen committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        in_channels = self.in_channels
        if self.with_avg_pool:
            self.avg_pool = nn.AvgPool2d(roi_feat_size)
        else:
            in_channels *= (self.roi_feat_size * self.roi_feat_size)
        if self.with_cls:
            self.fc_cls = nn.Linear(in_channels, num_classes)
        if self.with_reg:
            out_dim_reg = 4 if reg_class_agnostic else 4 * num_classes
            self.fc_reg = nn.Linear(in_channels, out_dim_reg)
        self.debug_imgs = None

    def init_weights(self):
        if self.with_cls:
            nn.init.normal_(self.fc_cls.weight, 0, 0.01)
            nn.init.constant_(self.fc_cls.bias, 0)
        if self.with_reg:
            nn.init.normal_(self.fc_reg.weight, 0, 0.001)
            nn.init.constant_(self.fc_reg.bias, 0)

    def forward(self, x):
        if self.with_avg_pool:
            x = self.avg_pool(x)
        x = x.view(x.size(0), -1)
        cls_score = self.fc_cls(x) if self.with_cls else None
        bbox_pred = self.fc_reg(x) if self.with_reg else None
        return cls_score, bbox_pred

Kai Chen's avatar
Kai Chen committed
75
76
77
78
79
80
81
    def get_target(self, sampling_results, gt_bboxes, gt_labels,
                   rcnn_train_cfg):
        pos_proposals = [res.pos_bboxes for res in sampling_results]
        neg_proposals = [res.neg_bboxes for res in sampling_results]
        pos_gt_bboxes = [res.pos_gt_bboxes for res in sampling_results]
        pos_gt_labels = [res.pos_gt_labels for res in sampling_results]
        reg_classes = 1 if self.reg_class_agnostic else self.num_classes
Kai Chen's avatar
Kai Chen committed
82
83
84
85
86
87
        cls_reg_targets = bbox_target(
            pos_proposals,
            neg_proposals,
            pos_gt_bboxes,
            pos_gt_labels,
            rcnn_train_cfg,
Kai Chen's avatar
Kai Chen committed
88
            reg_classes,
pangjm's avatar
pangjm committed
89
90
            target_means=self.target_means,
            target_stds=self.target_stds)
Kai Chen's avatar
Kai Chen committed
91
92
        return cls_reg_targets

Kai Chen's avatar
Kai Chen committed
93
94
95
96
97
98
99
100
    def loss(self,
             cls_score,
             bbox_pred,
             labels,
             label_weights,
             bbox_targets,
             bbox_weights,
             reduce=True):
Kai Chen's avatar
Kai Chen committed
101
102
        losses = dict()
        if cls_score is not None:
Kai Chen's avatar
Kai Chen committed
103
            avg_factor = max(torch.sum(label_weights > 0).float().item(), 1.)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
104
            losses['loss_cls'] = self.loss_cls(
Kai Chen's avatar
Kai Chen committed
105
                cls_score, labels, label_weights, avg_factor=avg_factor)
Kai Chen's avatar
Kai Chen committed
106
107
            losses['acc'] = accuracy(cls_score, labels)
        if bbox_pred is not None:
Cao Yuhang's avatar
Cao Yuhang committed
108
            pos_inds = labels > 0
109
            if self.reg_class_agnostic:
Cao Yuhang's avatar
Cao Yuhang committed
110
                pos_bbox_pred = bbox_pred.view(bbox_pred.size(0), 4)[pos_inds]
111
112
            else:
                pos_bbox_pred = bbox_pred.view(bbox_pred.size(0), -1,
Cao Yuhang's avatar
Cao Yuhang committed
113
                                               4)[pos_inds, labels[pos_inds]]
Jiangmiao Pang's avatar
Jiangmiao Pang committed
114
            losses['loss_bbox'] = self.loss_bbox(
115
                pos_bbox_pred,
Cao Yuhang's avatar
Cao Yuhang committed
116
117
                bbox_targets[pos_inds],
                bbox_weights[pos_inds],
Kai Chen's avatar
Kai Chen committed
118
                avg_factor=bbox_targets.size(0))
Kai Chen's avatar
Kai Chen committed
119
120
121
122
123
124
125
        return losses

    def get_det_bboxes(self,
                       rois,
                       cls_score,
                       bbox_pred,
                       img_shape,
pangjm's avatar
pangjm committed
126
                       scale_factor,
Kai Chen's avatar
Kai Chen committed
127
                       rescale=False,
128
                       cfg=None):
Kai Chen's avatar
Kai Chen committed
129
130
131
132
133
        if isinstance(cls_score, list):
            cls_score = sum(cls_score) / float(len(cls_score))
        scores = F.softmax(cls_score, dim=1) if cls_score is not None else None

        if bbox_pred is not None:
Kai Chen's avatar
Kai Chen committed
134
135
            bboxes = delta2bbox(rois[:, 1:], bbox_pred, self.target_means,
                                self.target_stds, img_shape)
Kai Chen's avatar
Kai Chen committed
136
137
138
139
140
        else:
            bboxes = rois[:, 1:]
            # TODO: add clip here

        if rescale:
141
            bboxes /= scale_factor
Kai Chen's avatar
Kai Chen committed
142

143
        if cfg is None:
Kai Chen's avatar
Kai Chen committed
144
145
            return bboxes, scores
        else:
Jiangmiao Pang's avatar
Jiangmiao Pang committed
146
147
148
            det_bboxes, det_labels = multiclass_nms(bboxes, scores,
                                                    cfg.score_thr, cfg.nms,
                                                    cfg.max_per_img)
Kai Chen's avatar
Kai Chen committed
149
150

            return det_bboxes, det_labels
Kai Chen's avatar
Kai Chen committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

    def refine_bboxes(self, rois, labels, bbox_preds, pos_is_gts, img_metas):
        """Refine bboxes during training.

        Args:
            rois (Tensor): Shape (n*bs, 5), where n is image number per GPU,
                and bs is the sampled RoIs per image.
            labels (Tensor): Shape (n*bs, ).
            bbox_preds (Tensor): Shape (n*bs, 4) or (n*bs, 4*#class).
            pos_is_gts (list[Tensor]): Flags indicating if each positive bbox
                is a gt bbox.
            img_metas (list[dict]): Meta info of each image.

        Returns:
            list[Tensor]: Refined bboxes of each image in a mini-batch.
        """
        img_ids = rois[:, 0].long().unique(sorted=True)
        assert img_ids.numel() == len(img_metas)

        bboxes_list = []
        for i in range(len(img_metas)):
            inds = torch.nonzero(rois[:, 0] == i).squeeze()
            num_rois = inds.numel()

            bboxes_ = rois[inds, 1:]
            label_ = labels[inds]
            bbox_pred_ = bbox_preds[inds]
            img_meta_ = img_metas[i]
            pos_is_gts_ = pos_is_gts[i]

            bboxes = self.regress_by_class(bboxes_, label_, bbox_pred_,
                                           img_meta_)
            # filter gt bboxes
            pos_keep = 1 - pos_is_gts_
            keep_inds = pos_is_gts_.new_ones(num_rois)
            keep_inds[:len(pos_is_gts_)] = pos_keep

            bboxes_list.append(bboxes[keep_inds])

        return bboxes_list

    def regress_by_class(self, rois, label, bbox_pred, img_meta):
        """Regress the bbox for the predicted class. Used in Cascade R-CNN.

        Args:
            rois (Tensor): shape (n, 4) or (n, 5)
            label (Tensor): shape (n, )
            bbox_pred (Tensor): shape (n, 4*(#class+1)) or (n, 4)
Kai Chen's avatar
Kai Chen committed
199
            img_meta (dict): Image meta info.
Kai Chen's avatar
Kai Chen committed
200
201

        Returns:
Kai Chen's avatar
Kai Chen committed
202
            Tensor: Regressed bboxes, the same shape as input rois.
Kai Chen's avatar
Kai Chen committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        """
        assert rois.size(1) == 4 or rois.size(1) == 5

        if not self.reg_class_agnostic:
            label = label * 4
            inds = torch.stack((label, label + 1, label + 2, label + 3), 1)
            bbox_pred = torch.gather(bbox_pred, 1, inds)
        assert bbox_pred.size(1) == 4

        if rois.size(1) == 4:
            new_rois = delta2bbox(rois, bbox_pred, self.target_means,
                                  self.target_stds, img_meta['img_shape'])
        else:
            bboxes = delta2bbox(rois[:, 1:], bbox_pred, self.target_means,
                                self.target_stds, img_meta['img_shape'])
            new_rois = torch.cat((rois[:, [0]], bboxes), dim=1)

        return new_rois