bbox_head.py 7.57 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
import torch
Kai Chen's avatar
Kai Chen committed
2
3
import torch.nn as nn
import torch.nn.functional as F
Kai Chen's avatar
Kai Chen committed
4
from mmdet.core import (delta2bbox, multiclass_nms, bbox_target,
Kai Chen's avatar
Kai Chen committed
5
                        weighted_cross_entropy, weighted_smoothl1, accuracy)
6

Kai Chen's avatar
Kai Chen committed
7
from ..registry import HEADS
Kai Chen's avatar
Kai Chen committed
8
9


Kai Chen's avatar
Kai Chen committed
10
@HEADS.register_module
Kai Chen's avatar
Kai Chen committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
class BBoxHead(nn.Module):
    """Simplest RoI head, with only two fc layers for classification and
    regression respectively"""

    def __init__(self,
                 with_avg_pool=False,
                 with_cls=True,
                 with_reg=True,
                 roi_feat_size=7,
                 in_channels=256,
                 num_classes=81,
                 target_means=[0., 0., 0., 0.],
                 target_stds=[0.1, 0.1, 0.2, 0.2],
                 reg_class_agnostic=False):
        super(BBoxHead, self).__init__()
        assert with_cls or with_reg
        self.with_avg_pool = with_avg_pool
        self.with_cls = with_cls
        self.with_reg = with_reg
        self.roi_feat_size = roi_feat_size
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.target_means = target_means
        self.target_stds = target_stds
        self.reg_class_agnostic = reg_class_agnostic

        in_channels = self.in_channels
        if self.with_avg_pool:
            self.avg_pool = nn.AvgPool2d(roi_feat_size)
        else:
            in_channels *= (self.roi_feat_size * self.roi_feat_size)
        if self.with_cls:
            self.fc_cls = nn.Linear(in_channels, num_classes)
        if self.with_reg:
            out_dim_reg = 4 if reg_class_agnostic else 4 * num_classes
            self.fc_reg = nn.Linear(in_channels, out_dim_reg)
        self.debug_imgs = None

    def init_weights(self):
        if self.with_cls:
            nn.init.normal_(self.fc_cls.weight, 0, 0.01)
            nn.init.constant_(self.fc_cls.bias, 0)
        if self.with_reg:
            nn.init.normal_(self.fc_reg.weight, 0, 0.001)
            nn.init.constant_(self.fc_reg.bias, 0)

    def forward(self, x):
        if self.with_avg_pool:
            x = self.avg_pool(x)
        x = x.view(x.size(0), -1)
        cls_score = self.fc_cls(x) if self.with_cls else None
        bbox_pred = self.fc_reg(x) if self.with_reg else None
        return cls_score, bbox_pred

Kai Chen's avatar
Kai Chen committed
65
66
67
68
69
70
71
    def get_target(self, sampling_results, gt_bboxes, gt_labels,
                   rcnn_train_cfg):
        pos_proposals = [res.pos_bboxes for res in sampling_results]
        neg_proposals = [res.neg_bboxes for res in sampling_results]
        pos_gt_bboxes = [res.pos_gt_bboxes for res in sampling_results]
        pos_gt_labels = [res.pos_gt_labels for res in sampling_results]
        reg_classes = 1 if self.reg_class_agnostic else self.num_classes
Kai Chen's avatar
Kai Chen committed
72
73
74
75
76
77
        cls_reg_targets = bbox_target(
            pos_proposals,
            neg_proposals,
            pos_gt_bboxes,
            pos_gt_labels,
            rcnn_train_cfg,
Kai Chen's avatar
Kai Chen committed
78
            reg_classes,
pangjm's avatar
pangjm committed
79
80
            target_means=self.target_means,
            target_stds=self.target_stds)
Kai Chen's avatar
Kai Chen committed
81
82
        return cls_reg_targets

Kai Chen's avatar
Kai Chen committed
83
84
85
86
87
88
89
90
    def loss(self,
             cls_score,
             bbox_pred,
             labels,
             label_weights,
             bbox_targets,
             bbox_weights,
             reduce=True):
Kai Chen's avatar
Kai Chen committed
91
92
93
        losses = dict()
        if cls_score is not None:
            losses['loss_cls'] = weighted_cross_entropy(
yhcao6's avatar
rename  
yhcao6 committed
94
                cls_score, labels, label_weights, reduce=reduce)
Kai Chen's avatar
Kai Chen committed
95
96
            losses['acc'] = accuracy(cls_score, labels)
        if bbox_pred is not None:
97
98
99
100
101
102
            pos_mask = labels > 0
            if self.reg_class_agnostic:
                pos_bbox_pred = bbox_pred.view(bbox_pred.size(0), 4)[pos_mask]
            else:
                pos_bbox_pred = bbox_pred.view(bbox_pred.size(0), -1,
                                               4)[pos_mask, labels[pos_mask]]
Kai Chen's avatar
Kai Chen committed
103
            losses['loss_reg'] = weighted_smoothl1(
104
105
106
                pos_bbox_pred,
                bbox_targets[pos_mask],
                bbox_weights[pos_mask],
Kai Chen's avatar
Kai Chen committed
107
                avg_factor=bbox_targets.size(0))
Kai Chen's avatar
Kai Chen committed
108
109
110
111
112
113
114
        return losses

    def get_det_bboxes(self,
                       rois,
                       cls_score,
                       bbox_pred,
                       img_shape,
pangjm's avatar
pangjm committed
115
                       scale_factor,
Kai Chen's avatar
Kai Chen committed
116
                       rescale=False,
117
                       cfg=None):
Kai Chen's avatar
Kai Chen committed
118
119
120
121
122
        if isinstance(cls_score, list):
            cls_score = sum(cls_score) / float(len(cls_score))
        scores = F.softmax(cls_score, dim=1) if cls_score is not None else None

        if bbox_pred is not None:
Kai Chen's avatar
Kai Chen committed
123
124
            bboxes = delta2bbox(rois[:, 1:], bbox_pred, self.target_means,
                                self.target_stds, img_shape)
Kai Chen's avatar
Kai Chen committed
125
126
127
128
129
        else:
            bboxes = rois[:, 1:]
            # TODO: add clip here

        if rescale:
130
            bboxes /= scale_factor
Kai Chen's avatar
Kai Chen committed
131

132
        if cfg is None:
Kai Chen's avatar
Kai Chen committed
133
134
135
            return bboxes, scores
        else:
            det_bboxes, det_labels = multiclass_nms(
136
                bboxes, scores, cfg.score_thr, cfg.nms, cfg.max_per_img)
Kai Chen's avatar
Kai Chen committed
137
138

            return det_bboxes, det_labels
Kai Chen's avatar
Kai Chen committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    def refine_bboxes(self, rois, labels, bbox_preds, pos_is_gts, img_metas):
        """Refine bboxes during training.

        Args:
            rois (Tensor): Shape (n*bs, 5), where n is image number per GPU,
                and bs is the sampled RoIs per image.
            labels (Tensor): Shape (n*bs, ).
            bbox_preds (Tensor): Shape (n*bs, 4) or (n*bs, 4*#class).
            pos_is_gts (list[Tensor]): Flags indicating if each positive bbox
                is a gt bbox.
            img_metas (list[dict]): Meta info of each image.

        Returns:
            list[Tensor]: Refined bboxes of each image in a mini-batch.
        """
        img_ids = rois[:, 0].long().unique(sorted=True)
        assert img_ids.numel() == len(img_metas)

        bboxes_list = []
        for i in range(len(img_metas)):
            inds = torch.nonzero(rois[:, 0] == i).squeeze()
            num_rois = inds.numel()

            bboxes_ = rois[inds, 1:]
            label_ = labels[inds]
            bbox_pred_ = bbox_preds[inds]
            img_meta_ = img_metas[i]
            pos_is_gts_ = pos_is_gts[i]

            bboxes = self.regress_by_class(bboxes_, label_, bbox_pred_,
                                           img_meta_)
            # filter gt bboxes
            pos_keep = 1 - pos_is_gts_
            keep_inds = pos_is_gts_.new_ones(num_rois)
            keep_inds[:len(pos_is_gts_)] = pos_keep

            bboxes_list.append(bboxes[keep_inds])

        return bboxes_list

    def regress_by_class(self, rois, label, bbox_pred, img_meta):
        """Regress the bbox for the predicted class. Used in Cascade R-CNN.

        Args:
            rois (Tensor): shape (n, 4) or (n, 5)
            label (Tensor): shape (n, )
            bbox_pred (Tensor): shape (n, 4*(#class+1)) or (n, 4)
Kai Chen's avatar
Kai Chen committed
187
            img_meta (dict): Image meta info.
Kai Chen's avatar
Kai Chen committed
188
189

        Returns:
Kai Chen's avatar
Kai Chen committed
190
            Tensor: Regressed bboxes, the same shape as input rois.
Kai Chen's avatar
Kai Chen committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        """
        assert rois.size(1) == 4 or rois.size(1) == 5

        if not self.reg_class_agnostic:
            label = label * 4
            inds = torch.stack((label, label + 1, label + 2, label + 3), 1)
            bbox_pred = torch.gather(bbox_pred, 1, inds)
        assert bbox_pred.size(1) == 4

        if rois.size(1) == 4:
            new_rois = delta2bbox(rois, bbox_pred, self.target_means,
                                  self.target_stds, img_meta['img_shape'])
        else:
            bboxes = delta2bbox(rois[:, 1:], bbox_pred, self.target_means,
                                self.target_stds, img_meta['img_shape'])
            new_rois = torch.cat((rois[:, [0]], bboxes), dim=1)

        return new_rois