ssd_vgg.py 5.23 KB
Newer Older
yhcao6's avatar
yhcao6 committed
1
2
3
import torch
import torch.nn as nn
import torch.nn.functional as F
4
from mmcv.cnn import VGG, constant_init, kaiming_init, normal_init, xavier_init
yhcao6's avatar
yhcao6 committed
5
from mmcv.runner import load_checkpoint
Cao Yuhang's avatar
Cao Yuhang committed
6

Kai Chen's avatar
Kai Chen committed
7
from mmdet.utils import get_root_logger
Kai Chen's avatar
Kai Chen committed
8
from ..registry import BACKBONES
yhcao6's avatar
yhcao6 committed
9
10


Kai Chen's avatar
Kai Chen committed
11
@BACKBONES.register_module
yhcao6's avatar
yhcao6 committed
12
class SSDVGG(VGG):
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
    """VGG Backbone network for single-shot-detection

    Args:
        input_size (int): width and height of input, from {300, 512}.
        depth (int): Depth of vgg, from {11, 13, 16, 19}.
        out_indices (Sequence[int]): Output from which stages.

    Example:
        >>> self = SSDVGG(input_size=300, depth=11)
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 300, 300)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        (1, 1024, 19, 19)
        (1, 512, 10, 10)
        (1, 256, 5, 5)
        (1, 256, 3, 3)
        (1, 256, 1, 1)
    """
yhcao6's avatar
yhcao6 committed
33
34
    extra_setting = {
        300: (256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256),
yhcao6's avatar
yhcao6 committed
35
        512: (256, 'S', 512, 128, 'S', 256, 128, 'S', 256, 128, 'S', 256, 128),
yhcao6's avatar
yhcao6 committed
36
37
38
39
40
41
42
43
44
45
    }

    def __init__(self,
                 input_size,
                 depth,
                 with_last_pool=False,
                 ceil_mode=True,
                 out_indices=(3, 4),
                 out_feature_indices=(22, 34),
                 l2_norm_scale=20.):
46
        # TODO: in_channels for mmcv.VGG
yhcao6's avatar
yhcao6 committed
47
48
49
50
51
52
        super(SSDVGG, self).__init__(
            depth,
            with_last_pool=with_last_pool,
            ceil_mode=ceil_mode,
            out_indices=out_indices)
        assert input_size in (300, 512)
yhcao6's avatar
yhcao6 committed
53
        self.input_size = input_size
yhcao6's avatar
yhcao6 committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

        self.features.add_module(
            str(len(self.features)),
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1))
        self.features.add_module(
            str(len(self.features)),
            nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6))
        self.features.add_module(
            str(len(self.features)), nn.ReLU(inplace=True))
        self.features.add_module(
            str(len(self.features)), nn.Conv2d(1024, 1024, kernel_size=1))
        self.features.add_module(
            str(len(self.features)), nn.ReLU(inplace=True))
        self.out_feature_indices = out_feature_indices

        self.inplanes = 1024
        self.extra = self._make_extra_layers(self.extra_setting[input_size])
        self.l2_norm = L2Norm(
            self.features[out_feature_indices[0] - 1].out_channels,
            l2_norm_scale)

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
77
            logger = get_root_logger()
yhcao6's avatar
yhcao6 committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.features.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, nn.BatchNorm2d):
                    constant_init(m, 1)
                elif isinstance(m, nn.Linear):
                    normal_init(m, std=0.01)
        else:
            raise TypeError('pretrained must be a str or None')

        for m in self.extra.modules():
            if isinstance(m, nn.Conv2d):
                xavier_init(m, distribution='uniform')

        constant_init(self.l2_norm, self.l2_norm.scale)

    def forward(self, x):
        outs = []
        for i, layer in enumerate(self.features):
            x = layer(x)
            if i in self.out_feature_indices:
                outs.append(x)
        for i, layer in enumerate(self.extra):
            x = F.relu(layer(x), inplace=True)
            if i % 2 == 1:
                outs.append(x)
        outs[0] = self.l2_norm(outs[0])
        if len(outs) == 1:
            return outs[0]
        else:
            return tuple(outs)

    def _make_extra_layers(self, outplanes):
        layers = []
        kernel_sizes = (1, 3)
        num_layers = 0
        outplane = None
        for i in range(len(outplanes)):
            if self.inplanes == 'S':
                self.inplanes = outplane
                continue
            k = kernel_sizes[num_layers % 2]
            if outplanes[i] == 'S':
                outplane = outplanes[i + 1]
                conv = nn.Conv2d(
                    self.inplanes, outplane, k, stride=2, padding=1)
            else:
                outplane = outplanes[i]
                conv = nn.Conv2d(
                    self.inplanes, outplane, k, stride=1, padding=0)
            layers.append(conv)
            self.inplanes = outplanes[i]
            num_layers += 1
yhcao6's avatar
yhcao6 committed
133
134
        if self.input_size == 512:
            layers.append(nn.Conv2d(self.inplanes, 256, 4, padding=1))
yhcao6's avatar
yhcao6 committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        return nn.Sequential(*layers)


class L2Norm(nn.Module):

    def __init__(self, n_dims, scale=20., eps=1e-10):
        super(L2Norm, self).__init__()
        self.n_dims = n_dims
        self.weight = nn.Parameter(torch.Tensor(self.n_dims))
        self.eps = eps
        self.scale = scale

    def forward(self, x):
Cao Yuhang's avatar
Cao Yuhang committed
149
150
151
152
153
        # normalization layer convert to FP32 in FP16 training
        x_float = x.float()
        norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps
        return (self.weight[None, :, None, None].float().expand_as(x_float) *
                x_float / norm).type_as(x)